论文标题
磁化和辐射冷却的两个温度积聚的温度特性流向黑洞
Temperature properties in magnetised and radiatively cooled two-temperature accretion flows onto a black hole
论文作者
论文摘要
关于电子热力学的简化假设通常用于对黑洞的通用磁流失动力学(GRMHD)模拟。为了解决这个问题,我们开发了一种自一前方的方法来研究磁性和辐射冷却的两激素积聚在两个空间维度的Kerr黑洞周围的磁性降温。该方法包括几个加热过程,辐射冷却以及通过库仑相互作用的电子和离子之间的耦合。我们通过在各种天体物理场景下进行磁化摩tori的磁化摩tori进行轴对称GRMHD模拟来测试我们的方法。通过这种方式,我们发现库仑相互作用的包含和辐射冷却会影响离子和电子的热力学特性,从而显着改变后者的温度分布,并强调在对这些流量进行成像时两倍的方法的重要性。此外,我们发现积聚速率会影响流量的批量特性以及电子和离子的热力学。有趣的是,我们在保持相同的吸积率的同时,观察到理智和疯狂积聚模式的定性温度特性,这可以帮助通过观测来区分疯狂和理智的积聚流。最后,我们提出了两种新关系,以等离子体 - $β$参数方面的电子,离子和气体的温度比。新关系代表了一种简单有效的方法,可以治疗超大质量黑洞(例如Sgr a* and M \,87*)上的两倍积聚流。
Simplified assumptions about the thermodynamics of the electrons are normally employed in general-relativistic magnetohydrodynamic (GRMHD) simulations of accretion onto black holes. To counter this, we have developed a self-consistent approach to study magnetised and radiatively cooled two-temperature accretion flows around a Kerr black hole in two spatial dimensions. The approach includes several heating processes, radiative cooling, and a coupling between the electrons and the ions via Coulomb interaction. We test our approach by performing axisymmetric GRMHD simulations of magnetised tori accreting onto a Kerr black hole under various astrophysical scenarios. In this way, we find that the inclusion of the Coulomb interaction and the radiative cooling impacts the thermodynamical properties of both the ions and electrons, changing significantly the temperature distribution of the latter, and underlining the importance of a two-temperature approach when imaging these flows. In addition, we find that the accretion rate influences the bulk properties of the flow as well as the thermodynamics of the electrons and ions. Interestingly, we observe qualitatively distinct temperature properties for SANE and MAD accretion modes while maintaining the same accretion rates, which could help distinguishing MAD and SANE accretion flows via observations. Finally, we propose two new relations for the temperature ratios of the electrons, ions, and of the gas in terms of the plasma-$β$ parameter. The new relations represent a simple and effective approach to treat two-temperature accretion flows on supermassive black holes such as Sgr A* and M\,87*.