论文标题
阳离子化学障碍对铀谷氨酸混合氧化物缺陷形成能的影响
Effect of cationic chemical disorder on defect formation energies in uranium-plutonium mixed oxides
论文作者
论文摘要
在原子量表上,铀谷氨酸混合氧化物(U,PU)O_2的特征是阳离子化学障碍,这需要随机分布在阳离子sublattice上。在目前的工作中,我们研究了使用原子间电位和密度功能理论(DFT+U)计算中(u,pu)O_2中障碍对点的影响的影响。我们专注于这些氧化物中最稳定缺陷之一的结合肖特基缺陷(BSD)。作为第一步,我们估计了BSD周围的R_D距离,局部化学环境对此会影响其形成能量。为此,我们提出了一种原始程序,其中计算出不同水平的多个超级细胞的地层能量。我们得出的结论是,BSD周围的前三个阳离子壳对其形成能量(R_ {D} = 7.0 \ {AA})具有不可忽略的影响。然后,我们应用系统的方法来计算BSD构型在BSD周围的第一和第二个最近的邻居壳上的所有可能的阳离子配置。我们表明,根据U和PU相邻阳离子的相对量,地层能量的间隔为0.97 eV。基于这些结果,我们提出了一个相互作用模型,该模型描述了名义和局部组成对BSD形成能的影响。最后,DFT+U基准计算显示了以U丰富本地环境为特征的配置的令人满意的协议,而在PU富含pu的情况下,较大的不匹配。总而言之,这项工作提供了关于(u,pu)O_2中BSD缺陷特性的宝贵见解,并可以代表一个有效的策略来研究无序化合物中的缺陷性质。
At the atomic scale, uranium-plutonium mixed oxides (U,Pu)O_2 are characterized by cationic chemical disorder, which entails that U and Pu cations are randomly distributed on the cation sublattice. In the present work, we study the impact of disorder on point-defect formation energies in (U,Pu)O_2 using interatomic-potential and Density Functional Theory (DFT+U) calculations. We focus on bound Schottky defects (BSD) that are among the most stable defects in these oxides. As a first step, we estimate the distance R_D around the BSD up to which the local chemical environment significantly affects their formation energy. To this end, we propose an original procedure in which the formation energy is computed for several supercells at varying levels of disorder. We conclude that the first three cation shells around the BSD have a non-negligible influence on their formation energy (R_{D} = 7.0 \{AA}). We apply then a systematic approach to compute the BSD formation energies for all the possible cation configurations on the first and second nearest neighbor shells around the BSD. We show that the formation energy can range in an interval of 0.97 eV, depending on the relative amount of U and Pu neighboring cations. Based on these results, we propose an interaction model that describes the effect of nominal and local composition on the BSD formation energy. Finally, the DFT+U benchmark calculations show a satisfactory agreement for configurations characterized by a U-rich local environment, and a larger mismatch in the case of a Pu-rich one. In summary, this work provides valuable insights on the properties of BSD defects in (U,Pu)O_2, and can represent a valid strategy to study point defect properties in disordered compounds.