论文标题
中微子磁矩的非扰动作用
Nonperturbative effects in neutrino magnetic moments
论文作者
论文摘要
在本文中,我们通过在低能量下的手性扰动理论匹配中微子QUARK张量算子对中微子磁矩的QCD非扰动贡献。可以将这些非驱动性贡献与扰动贡献进行比较,这些贡献是从$μ= m_w $ = m_w $降至$μ= 2〜 \ mathrm {gev} $时从一环混合引起的。然后,我们将低能源中微子有效野外理论(LNEFT)的偶极和张量威尔逊系数与中微子 - 电子散射分别限制,并使用孔毒素数据和相干性弹性中微子 - 核氧化物散射(CE $ ns)(CE $ ns),并与这两种贡献之间的竞争,以显示这两种竞争,以显示这两种竞争,并显示了这两种贡献,在肾脏范围内,在肾脏范围内,在肾脏化量表中均具有肾脏化量表。 $μ= 2〜 \ Mathrm {gev} $和$μ= m_w $ in $ \ bar {\ mathrm {ms}} $ scheme。在中微子电子散射中,发现非扰动贡献占主导地位的涉及上下夸克的系数,而预期它们的数量级与涉及奇怪夸克的系数的扰动贡献相同。至于CE $ν$ ns中的约束,张量操作员可以通过直接或间接方式为过程做出贡献。结果,与直接耦合相比,所有耦合的间接贡献在内的所有耦合零件都可以忽略不计。由于非驱动性贡献至关重要地取决于$ c_t $的值,因此其输入将影响提取张量lneft Wilson系数的限制。我们使用$ C_T $引用型号和晶格估算值来计算这些系数上的上限。
In this paper, we calculate the QCD nonperturbative contributions of the neutrino-quark tensor operators to the neutrino magnetic moments by matching onto the chiral perturbation theory at low energies. These nonperturbative contributions can be compared to the perturbative ones, which are induced from one-loop mixing when performing the renormalization group evolutions from $μ=m_W$ down to $μ=2~\mathrm{GeV}$. We then constrain the dipole and tensor Wilson coefficients of the low-energy neutrino effective field theory (LNEFT) separately from the neutrino-electron scattering with Borexino data and coherent elastic neutrino-nucleus scattering (CE$ν$NS) with COHERENT data to show the competition between these two contributions, at the renormalization scales $μ=2~\mathrm{GeV}$ and $μ=m_W$ in the $\bar{\mathrm{MS}}$ scheme. In the neutrino-electron scattering, it is found that the nonperturbative contributions dominate for the coefficients involving up and down quarks, while they are expected to be of the same order of magnitude as the perturbative contributions for the coefficients involving strange quark. As for constraints in the CE$ν$NS, the tensor operators can contribute to the process through either direct or indirect way. As a result, the indirect contributions including nonperturbative and perturbative parts for all couplings become negligible in comparison with the direct ones. As the nonperturbative contributions crucially depend on the value of $c_T$, its inputs will affect the extraction of limits on the tensor LNEFT Wilson coefficients. We compute the upper bounds on these coefficients with $c_T$ quoting from the model and lattice estimates.