论文标题

Adasparse:多域点击率预测的自适应稀疏结构

AdaSparse: Learning Adaptively Sparse Structures for Multi-Domain Click-Through Rate Prediction

论文作者

Yang, Xuanhua, Peng, Xiaoyu, Wei, Penghui, Liu, Shaoguo, Wang, Liang, Zheng, Bo

论文摘要

点击率(CTR)预测是推荐和广告系统中的基本技术。最近的研究证明,学习为多个领域服务的统一模型可有效提高整体绩效。但是,在有限的培训数据下,改善跨领域的概括,并且由于其计算复杂性而难以部署当前的解决方案仍然具有挑战性。在本文中,我们为多域CTR预测提出了一个简单而有效的框架,该预测学习了每个域的适应性稀疏结构,从而在计算成本较低的域中实现了更好的概括。在Adasparse中,我们引入了域感知的神经元的加权因子来测量神经元的重要性,而对于每个域而言,我们的模型可以修剪冗余神经元以改善概括。我们进一步添加了灵活的稀疏性正常,以控制学习结构的稀疏性比。离线和在线实验表明,ADASPARSE的表现高于先前的多域CTR模型。

Click-through rate (CTR) prediction is a fundamental technique in recommendation and advertising systems. Recent studies have proved that learning a unified model to serve multiple domains is effective to improve the overall performance. However, it is still challenging to improve generalization across domains under limited training data, and hard to deploy current solutions due to their computational complexity. In this paper, we propose a simple yet effective framework AdaSparse for multi-domain CTR prediction, which learns adaptively sparse structure for each domain, achieving better generalization across domains with lower computational cost. In AdaSparse, we introduce domain-aware neuron-level weighting factors to measure the importance of neurons, with that for each domain our model can prune redundant neurons to improve generalization. We further add flexible sparsity regularizations to control the sparsity ratio of learned structures. Offline and online experiments show that AdaSparse outperforms previous multi-domain CTR models significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源