论文标题

基于社会关系和历史行为的个性化推荐系统

Personalized recommendation system based on social relationships and historical behaviors

论文作者

Lee, Yan-Li, Zhou, Tao, Yang, Kexin, Du, Yajun, Pan, Liming

论文摘要

先前的研究表明,基于用户的历史行为的建议算法可以提供令人满意的建议性能。这些算法中的许多都关注用户的兴趣,而忽略了社会关系对用户行为的影响。社会关系不仅具有类似的消费品味或行为的内在信息,而且还意味着个人对邻居的影响。在本文中,我们假设用户的社会关系和历史行为与相同的因素有关。基于这个假设,我们提出了一种算法,以通过两种信息的相互约束来关注对推荐系统有用的社会关系。我们在包括所有用户,活动用户,不活动用户和冷启动用户的四种类型的用户上测试了算法的性能。结果表明,所提出的算法在四种类型的情况下优于建议准确性和多样性指标的三种类型的基准。我们进一步设计了一个随机模型来探索社会关系对推荐绩效的贡献,结果表明,社会关系在拟议的算法中的贡献取决于社会关系和历史行为的耦合强度。

Previous studies show that recommendation algorithms based on historical behaviors of users can provide satisfactory recommendation performance. Many of these algorithms pay attention to the interest of users, while ignore the influence of social relationships on user behaviors. Social relationships not only carry intrinsic information of similar consumption tastes or behaviors, but also imply the influence of individual to its neighbors. In this paper, we assume that social relationships and historical behaviors of users are related to the same factors. Based on this assumption, we propose an algorithm to focus on social relationships useful for recommendation systems through mutual constraints from both types of information. We test the performance of our algorithm on four types of users, including all users, active users, inactive users and cold-start users. Results show that the proposed algorithm outperforms benchmarks in four types of scenarios subject to recommendation accuracy and diversity metrics. We further design a randomization model to explore the contribution of social relationships to recommendation performance, and the result shows that the contribution of social relationships in the proposed algorithm depends on the coupling strength of social relationships and historical behaviors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源