论文标题

击败sublerear时期的贪婪匹配

Beating Greedy Matching in Sublinear Time

论文作者

Behnezhad, Soheil, Roghani, Mohammad, Rubinstein, Aviad, Saberi, Amin

论文摘要

我们研究用于估计图中最大匹配的大小的均匀时间算法。我们的主要结果是$(\ frac {1} {2}+ω(1))$ - 近似算法,可以用$ o(n^{1+ε})$时间实现,其中$ n $是顶点的数量,而常数$ε> 0 $可以任意地任意。对于该问题,最著名的下限是$ω(n)$,它适用于任何恒定近似。 现有算法要么获得$ \ frac {1} {2} $ - 近似[Behnezhad focs'21]的贪婪界限,要么需要在最大程度上进行一些假设才能以$ O(n^2)$ - time [Yoshida,Yamamoto,Yamamoto和Ito Stoc'09]运行。我们通过设计一种较少的“自适应”增强算法来改进这些方法,以最大程度地匹配可能具有独立的匹配。

We study sublinear time algorithms for estimating the size of maximum matching in graphs. Our main result is a $(\frac{1}{2}+Ω(1))$-approximation algorithm which can be implemented in $O(n^{1+ε})$ time, where $n$ is the number of vertices and the constant $ε> 0$ can be made arbitrarily small. The best known lower bound for the problem is $Ω(n)$, which holds for any constant approximation. Existing algorithms either obtain the greedy bound of $\frac{1}{2}$-approximation [Behnezhad FOCS'21], or require some assumption on the maximum degree to run in $o(n^2)$-time [Yoshida, Yamamoto, and Ito STOC'09]. We improve over these by designing a less "adaptive" augmentation algorithm for maximum matching that might be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源