论文标题
Fair-BFL:基于区块链的联合学习的灵活和激励重新设计
FAIR-BFL: Flexible and Incentive Redesign for Blockchain-based Federated Learning
论文作者
论文摘要
Vanilla联合学习(FL)依赖于集中的全球聚合机制,并假设所有客户都是诚实的。这使得FL减轻单一失败和不诚实客户的挑战。由于FL和区块链的好处(例如,民主,激励和不变性),FL的设计理念中的这些即将到来的挑战呼吁基于区块链的联邦学习(BFL)。但是,香草BFL中的一个问题是,其功能并未以动态的方式遵循采用者的需求。此外,Vanilla BFL依靠无法验证的客户的自我报告的贡献(例如数据大小),因为在FL中不允许检查客户的原始数据是否存在隐私问题。我们设计和评估了一种新型的BFL框架,并以更大的灵活性和激励机制(称为Fair-BFL)解决了香草BFL的确定挑战。与现有作品相反,Fair-BFL通过模块化设计提供了前所未有的灵活性,使采用者可以按照动态的方式调整其业务需求的能力。我们的设计说明了BFL量化每个客户对全球学习过程的贡献的能力。这种量化提供了一个合理的指标,可以在联合客户之间分配奖励,并帮助发现可能毒害全球模型的恶意参与者。
Vanilla Federated learning (FL) relies on the centralized global aggregation mechanism and assumes that all clients are honest. This makes it a challenge for FL to alleviate the single point of failure and dishonest clients. These impending challenges in the design philosophy of FL call for blockchain-based federated learning (BFL) due to the benefits of coupling FL and blockchain (e.g., democracy, incentive, and immutability). However, one problem in vanilla BFL is that its capabilities do not follow adopters' needs in a dynamic fashion. Besides, vanilla BFL relies on unverifiable clients' self-reported contributions like data size because checking clients' raw data is not allowed in FL for privacy concerns. We design and evaluate a novel BFL framework, and resolve the identified challenges in vanilla BFL with greater flexibility and incentive mechanism called FAIR-BFL. In contrast to existing works, FAIR-BFL offers unprecedented flexibility via the modular design, allowing adopters to adjust its capabilities following business demands in a dynamic fashion. Our design accounts for BFL's ability to quantify each client's contribution to the global learning process. Such quantification provides a rational metric for distributing the rewards among federated clients and helps discover malicious participants that may poison the global model.