论文标题
部分可观测时空混沌系统的无模型预测
Towards Representation Alignment and Uniformity in Collaborative Filtering
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Collaborative filtering (CF) plays a critical role in the development of recommender systems. Most CF methods utilize an encoder to embed users and items into the same representation space, and the Bayesian personalized ranking (BPR) loss is usually adopted as the objective function to learn informative encoders. Existing studies mainly focus on designing more powerful encoders (e.g., graph neural network) to learn better representations. However, few efforts have been devoted to investigating the desired properties of representations in CF, which is important to understand the rationale of existing CF methods and design new learning objectives. In this paper, we measure the representation quality in CF from the perspective of alignment and uniformity on the hypersphere. We first theoretically reveal the connection between the BPR loss and these two properties. Then, we empirically analyze the learning dynamics of typical CF methods in terms of quantified alignment and uniformity, which shows that better alignment or uniformity both contribute to higher recommendation performance. Based on the analyses results, a learning objective that directly optimizes these two properties is proposed, named DirectAU. We conduct extensive experiments on three public datasets, and the proposed learning framework with a simple matrix factorization model leads to significant performance improvements compared to state-of-the-art CF methods. Our implementations are publicly available at https://github.com/THUwangcy/DirectAU.