论文标题

部分可观测时空混沌系统的无模型预测

Detection of Gravitational Wave Signals from Precessing Binary Black Hole Systems using Convolutional Neural Network

论文作者

Verma, Chetan, Reza, Amit, Gaur, Gurudatt, Krishnaswamy, Dilip, Caudill, Sarah

论文摘要

目前,使用Ligo和处女座观测器对黑洞二进制的重力波(GWS)的当前搜索仅限于黑洞旋转与二元轨道角动量对齐(或反对准)的系统的分析模型。检测黑洞二进制物具有进攻的细胞疗法对于获得这些来源形成的独特天体物理学见解至关重要。因此,必须制定能够识别紧凑型二进制旋转的搜索策略。对齐的自旋波形模型不足以检测高旋转旋转的紧凑型二进制文件。虽然已经做出了几项努力来构建模板库,以使用匹配的过滤来检测进攻二进制文件,但此方法需要许多模板来覆盖整个搜索参数空间,从而大大增加了计算成本。这项工作探讨了使用卷积神经网络(CNN)对二进制黑洞(BBH)的GW信号的检测。我们将对齐或进攻性BBH系统的GW信号的检测作为分层二进制分类问题。第一个CNN模型将应变数据分类为纯噪声或噪声信号(BBH的GWS)。然后,第二个CNN模型将检测到的嘈杂信号数据分类为起源于进攻或不必要的(对齐/抗对约)系统。使用模拟数据,训练有素的分类器以超过99%的精度区分噪声和嘈杂的GW信号。第二个分类器进一步区分了对齐和高度进攻信号的准确性约为95%。我们通过执行一致的测试将分析扩展到多探测器框架。此外,我们还测试了训练有素的体系结构对LIGO的前三个观察运行的数据的性能,以将检测到的BBH事件确定为对齐或进攻。

Current searches for gravitational waves (GWs) from black hole binaries using the LIGO and Virgo observatories are limited to analytical models for systems with black hole spins aligned (or anti-aligned) with the orbital angular momentum of the binary. Detecting black hole binaries with precessing spinsis crucial for gaining unique astrophysical insights into the formation of these sources. Therefore, it is essential to develop a search strategy capable of identifying compact binaries with precessing spins. Aligned-spin waveform models are inadequate for detecting compact binaries with high precessing spins. While several efforts have been made to construct template banks for detecting precessing binaries using matched filtering, this approach requires many templates to cover the entire search parameter space, significantly increasing the computational cost. This work explores the detection of GW signals from binary black holes(BBH) with both aligned and precessing spins using a convolutional neural network (CNN). We frame the detection of GW signals from aligned or precessing BBH systems as a hierarchical binary classification problem. The first CNN model classifies strain data as either pure noise or noisy signals (GWs from BBH). A second CNN model then classifies the detected noisy signal data as originating from either precessing or non-precessing (aligned/anti-aligned) systems. Using simulated data, the trained classifier distinguishes between noise and noisy GW signals with more than 99% accuracy. The second classifier further differentiates between aligned and highly precessing signals with around 95% accuracy. We extended our analysis to a multi-detector framework by performing a coincident test. Additionally, we tested the performance of our trained architecture on data from the first three observation runs of LIGO to identify detected BBH events as either aligned or precessing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源