论文标题

学会预测人类如何从交互运动中操纵大型对象

Learn to Predict How Humans Manipulate Large-sized Objects from Interactive Motions

论文作者

Wan, Weilin, Yang, Lei, Liu, Lingjie, Zhang, Zhuoying, Jia, Ruixing, Choi, Yi-King, Pan, Jia, Theobalt, Christian, Komura, Taku, Wang, Wenping

论文摘要

在互动过程中了解人类的意图一直是一个持久的主题,它在人类机器人互动,虚拟现实和监视中都有应用。在这项研究中,我们专注于与大型每日对象的全身相互作用,并旨在预测对物体和人类的未来状态,并在对人类对象相互作用的顺序观察下。由于没有这样的数据集专用于与大型每日物体的全身相互作用,因此我们收集了一个大规模的数据集,其中包含数千种用于培训和评估目的的交互。我们还观察到,对象的固有物理属性对于对象运动预测很有用,因此设计一组对象动态描述符以编码此类内部属性。我们将对象动态描述符视为一种新模式,并提出图形神经网络HO-GCN,以将运动数据和动态描述符融合预测任务。我们显示了所提出的网络,消耗动态描述符可以实现最先进的预测结果,并帮助网络更好地推广到看不见的对象。我们还证明了预测结果对人类机器人的合作有用。

Understanding human intentions during interactions has been a long-lasting theme, that has applications in human-robot interaction, virtual reality and surveillance. In this study, we focus on full-body human interactions with large-sized daily objects and aim to predict the future states of objects and humans given a sequential observation of human-object interaction. As there is no such dataset dedicated to full-body human interactions with large-sized daily objects, we collected a large-scale dataset containing thousands of interactions for training and evaluation purposes. We also observe that an object's intrinsic physical properties are useful for the object motion prediction, and thus design a set of object dynamic descriptors to encode such intrinsic properties. We treat the object dynamic descriptors as a new modality and propose a graph neural network, HO-GCN, to fuse motion data and dynamic descriptors for the prediction task. We show the proposed network that consumes dynamic descriptors can achieve state-of-the-art prediction results and help the network better generalize to unseen objects. We also demonstrate the predicted results are useful for human-robot collaborations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源