论文标题
量子空间的不变平均值弱几乎是周期性功能
Invariant means on subspaces of quantum weakly almost periodic functionals
论文作者
论文摘要
让$ m $成为一个hopf - von neuman代数,带有$ m _*$和$ wap(m)$ $ m $的子空间,该子空间由$ m _*$的弱近期函数组成。此类代数的主要示例为$ m = l^\ infty(\ mathbb g)$,用于本地紧凑的量子组$ \ mathbb g $。我们定义了一对左/右空间$ WAP_ {ISO,L}(M)$和$ WAP_ {ISO,R}(M)$内部$ WAP(M)$,并证明它们具有不变的含义。这些空间目前是在量子设置中允许不变均值的已知宽度。在$ M = l^\ infty(g)$和$ g $的情况下,这些空间等于$ WAP(g)$。
Let $M$ be a Hopf--von Neuman algebra with the predual $M_*$ and $WAP(M)$ the subspace in $M$ composed of weakly almost periodic functionals on $M_*$. The main example of such an algebra is $M=L^\infty(\mathbb G)$ for a locally compact quantum group $\mathbb G$. We define a pair of left/right spaces $WAP_{iso,l}(M)$ and $WAP_{iso,r}(M)$ inside $WAP(M)$ and prove that they carry invariant means. These spaces are currently the widest known to admit invariant means in the quantum setting. In the case when $M=L^\infty(G)$ and $G$ is a locally compact group, these spaces are equal to $WAP(G)$.