论文标题

tomo-e gozen瞬态调查的深度学习真实/虚假分类

Deep-learning Real/Bogus classification for the Tomo-e Gozen transient survey

论文作者

Takahashi, Ichiro, Hamasaki, Ryo, Ueda, Naonori, Tanaka, Masaomi, Tominaga, Nozomu, Sako, Shigeyuki, Ohsawa, Ryou, Yoshida, Naoki

论文摘要

我们提出了一个深度神经网络真实/虚假的分类器,该分类器通过处理培训数据中的标签错误来改善Tomo-e Gozen瞬态调查中的分类性能。在与Tomo-e Gozen的宽场高频瞬态调查中,常规卷积神经网络分类器的性能不够,因为每晚出现$ 10^6 $ bogus检测。需要更好的分类器,我们开发了一种新的两阶段培训方法。在这种培训方法中,培训数据中的标签错误首先是通过正常监督的学习分类检测到的,然后未标记并用于培训半监督学习。对于实际观察到的数据,使用此方法的分类器在曲线(AUC)下达到0.9998的面积,并以0.9为0.9的假正(FPR)为0.0002。这种训练方法节省了人类的重新标签,并在培训数据方面更好地使用了很大的标签错误。通过在Tomo-e Gozen管道中实现开发的分类器,将瞬态候选者的数量减少到$ \ sim $ 40 $ 40对象,即先前版本的$ \ sim $ 1/130,同时保持真实瞬态的恢复率。这可以更有效地选择目标进行后续观察。

We present a deep neural network Real/Bogus classifier that improves classification performance in the Tomo-e Gozen transient survey by handling label errors in the training data. In the wide-field, high-frequency transient survey with Tomo-e Gozen, the performance of conventional convolutional neural network classifier is not sufficient as about $10^6$ bogus detections appear every night. In need of a better classifier, we have developed a new two-stage training method. In this training method, label errors in the training data are first detected by normal supervised learning classification, and then they are unlabeled and used for training of semi-supervised learning. For actual observed data, the classifier with this method achieves an area under the curve (AUC) of 0.9998 and a false positive rate (FPR) of 0.0002 at true positive rate (TPR) of 0.9. This training method saves relabeling effort by humans and works better on training data with a high fraction of label errors. By implementing the developed classifier in the Tomo-e Gozen pipeline, the number of transient candidates was reduced to $\sim$40 objects per night, which is $\sim$1/130 of the previous version, while maintaining the recovery rate of real transients. This enables more efficient selection of targets for follow-up observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源