论文标题

费率常数III的机器学习方法:应用于CL($^2 $ P) + CH $ _4 $ $ \ rightarrow $ ch $ _3 $ _3 $ + HCl反应

A Machine Learning Approach for Rate Constants III: Application to the Cl($^2$P) + CH$_4$ $\rightarrow$ CH$_3$ + HCl Reaction

论文作者

Houston, Paul L., Nandi, Apurba, Bowman, Joel M.

论文摘要

反应Cl的热速率常数($^2 $ P) + CH $ _4 $ $ \ rightArrow $ CH $ _3 $ _3 $ + HCl的温度依赖性是使用高斯处理机器学习(ML)方法来计算的,以在较大的温度范围内训练和预测热速率常数。在以前的两份报告中开发的程序之后,我们使用了大约40个反应/电势表面组合的训练数据集,每个训练数据集用于计算大约八个温度下速率常数的相应数据库。对于当前应用程序,我们在整个数据集上进行训练,然后预测使用“拆分”数据集在低温和高温下进行校正的标题反应的温度依赖性,以捕获隧道和锻炼。与准确的量子质量势能表面相比,与精确的量子相比,结果是最近的RPMD计算的改进。观察到在低温下的隧道和高温下的隧穿都会影响速率常数。 TST甚至复杂的隧道校正都没有描述的弹性效应确实出现在高于600 K的温度下。ML结果描述了这些效果,实际上,在600 K时与RPMD结果合并(可以描述杂种),并且两者都接近实验,在最高的实验温度下。

The temperature dependence of the thermal rate constant for the reaction Cl($^2$P) + CH$_4$ $\rightarrow$ CH$_3$ + HCl is calculated using a Gaussian Process machine learning (ML) approach to train on and predict thermal rate constants over a large temperature range. Following procedures developed in two previous reports, we use a training dataset of approximately 40 reaction/potential surface combinations, each of which is used to calculate the corresponding data base of rate constant at approximately eight temperatures. For the current application, we train on the entire dataset and then predict the temperature dependence of the title reaction employing a "split" dataset for correction at low and high temperatures to capture both tunneling and recrossing. The results are an improvement on recent RPMD calculations compared to accurate quantum ones, using the same high-level ab initio potential energy surface. Both tunneling at low temperatures and recrossing at high temperatures are observed to influence the rate constants. Recrossing effects, which are not described by TST and even sophisticated tunneling corrections, do appear in experiment at temperatures above around 600 K. The ML results describe these effects and in fact, merge at 600 K with RPMD results (which can describe recrossing), and both are close to experiment at the highest experimental temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源