论文标题

联邦平均数据泄漏

Data Leakage in Federated Averaging

论文作者

Dimitrov, Dimitar I., Balunović, Mislav, Konstantinov, Nikola, Vechev, Martin

论文摘要

最近的攻击表明,可以从FEDSGD更新中恢复用户数据,从而破坏隐私。但是,这些攻击具有有限的实际相关性,因为联邦学习通常使用FedAvg算法。与FEDSGD相比,从FedAvg更新中恢复数据要困难得多,因为:(i)以未观察到的中间网络权重计算更新,(ii)使用大量批次,并且(iii)标签和网络权重在客户端步骤中同时不同。在这项工作中,我们提出了一种新的基于优化的攻击,该攻击通过解决上述挑战来成功攻击FedAvg。首先,我们使用自动差异化解决了优化问题,该分化迫使客户端更新的模拟,该更新生成了恢复的标签和输入的未观察到的参数,以匹配接收到的客户端更新。其次,我们通过将来自不同时期的图像与置换不变的先验联系起来来解决大量批处理。第三,我们通过在每个FedAvg步骤中估算现有FedSGD攻击的参数来恢复标签。在流行的女性数据集中,我们证明,平均而言,我们从现实的FedAvg更新中成功恢复了> 45%的图像,该更新是在10个本地时期计算出的10批批次,每个图像,每个图像,每个图像,每张5张图像,而使用基线仅<10%。我们的发现表明,基于FedAvg的许多现实世界联合学习实现非常脆弱。

Recent attacks have shown that user data can be recovered from FedSGD updates, thus breaking privacy. However, these attacks are of limited practical relevance as federated learning typically uses the FedAvg algorithm. Compared to FedSGD, recovering data from FedAvg updates is much harder as: (i) the updates are computed at unobserved intermediate network weights, (ii) a large number of batches are used, and (iii) labels and network weights vary simultaneously across client steps. In this work, we propose a new optimization-based attack which successfully attacks FedAvg by addressing the above challenges. First, we solve the optimization problem using automatic differentiation that forces a simulation of the client's update that generates the unobserved parameters for the recovered labels and inputs to match the received client update. Second, we address the large number of batches by relating images from different epochs with a permutation invariant prior. Third, we recover the labels by estimating the parameters of existing FedSGD attacks at every FedAvg step. On the popular FEMNIST dataset, we demonstrate that on average we successfully recover >45% of the client's images from realistic FedAvg updates computed on 10 local epochs of 10 batches each with 5 images, compared to only <10% using the baseline. Our findings show many real-world federated learning implementations based on FedAvg are vulnerable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源