论文标题
水合阴离子:从簇到散装溶液的准化学理论
Hydrated anions: From clusters to bulk solution with quasi-chemical theory
论文作者
论文摘要
水合离子与溶液和界面伙伴的相互作用在化学能尺度上很强。在这里,我们测试了最重要的\ textit {ab libio理论},以评估离子的水合自由能,即,\ textit {quasi-chemical理论}(qct)。我们专注于卤化物阴离子,也专注于氢氧化阴离子,因为它们是所有理论的杰出挑战。 QCT是通过识别内壳簇的识别,这些簇的单独处理,然后将这些结果整合到更广泛的解决方案环境中。我们利用了与离子水平平衡的质谱测量值的密切比较。在这里,这种理论实验比较非常出色。该协议加强了理论和实验,并为QCT提供了数值准确的内壳贡献。涉及较重卤化物的内壳复合物显示出惊人的不对称水合簇。当内部壳材料将离子免受外部溶液环境屏蔽时,QCT为利用可极化连续模型(PCM)提供了有利的设置。对于不对称的水合且较不有效屏蔽,较重的卤化离子,我们研究了一种反过程,其中从容易获得的AIMD计算中对内部壳结构进行了对散装溶液的计算。这种反过程是一个显着的改进,我们的最终结果与水合自由能的标准制表密切一致。在AIMD模拟中比较阴离子水合簇结构与散装溶液的比较强调了略有差异:散装溶液的不对称内部壳结构被调节,但仍然存在;与群集相比,散装解决方案中的内壳填充到较高的平均配位数。
The interactions of hydrated ions with solution and interface partners are strong on a chemical energy scale. Here, we test the foremost \textit{ab initio theory} for evaluation of hydration free energies of ions, namely, \textit{quasi-chemical theory} (QCT). We focus on halide anions, but also the hydroxide anion, since they have been outstanding challenges for all theories. QCT is built by identification of inner-shell clusters, separate treatment of those clusters, then integration of those results into the broader-scale solution environment. We exploit a close comparison with mass-spectrometric measurements of ion-hydration equilibria. That theory-experiment comparison is excellent with moderate computational effort here. This agreement reinforces both theory and experiment, and provides a numerically accurate inner-shell contribution to QCT. The inner-shell complexes involving heavier halides display strikingly asymmetric hydration clusters. QCT provides a favorable setting for exploitation of the polarizable continuum model (PCM) when the inner-shell material shields the ion from the outer solution environment. For the asymmetrically hydrated, and less effectively shielded, heavier halide ions, we investigate an inverse procedure in which the inner-shell structures are sampled from readily available AIMD calculations on the bulk solutions. This inverse procedure is a remarkable improvement and our final results are in close agreement with a standard tabulation of hydration free energies. Comparison of anion hydration cluster structures with bulk solutions from AIMD simulations emphasize slight differences: the asymmetries of bulk solution inner-shell structures are moderated, but still present; and inner shells fill to slightly higher average coordination numbers in bulk solution than in clusters.