论文标题

使用深度学习在侵入性冠状动脉造影中自动提取冠状动脉

Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms

论文作者

Meng, Yinghui, Du, Zhenglong, Zhao, Chen, Dong, Minghao, Pienta, Drew, Xu, Zhihui, Zhou, Weihua

论文摘要

从侵入性冠状动脉造影(ICA)中准确提取冠状动脉(ICA)对于临床决策而言,对于冠状动脉疾病的诊断和风险分层(CAD)很重要。在这项研究中,我们开发了一种使用深度学习来自动提取冠状动脉腔的方法。方法。提出了一种深度学习模型U-NET 3+,其中包含了全面的跳过连接和深度的监督,以自动从ICAS中自动提取冠状动脉。在这个新型的冠状动脉提取框架中采用了转移学习和混合损失功能。结果。使用了一个包含从210名患者获得的616个ICA的数据集。在技​​术评估中,U-NET 3+的骰子得分为0.8942,灵敏度为0.8735,高于U-NET ++(骰子得分:0.8814:0.8814,灵敏度为0.8331)和U-NET(骰子得分:0.8799,敏感性为0.8305)。结论。我们的研究表明,U-Net 3+优于其他分割框架,用于自动从ICA中提取冠状动脉。该结果表明了临床使用的巨大希望。

Accurate extraction of coronary arteries from invasive coronary angiography (ICA) is important in clinical decision-making for the diagnosis and risk stratification of coronary artery disease (CAD). In this study, we develop a method using deep learning to automatically extract the coronary artery lumen. Methods. A deep learning model U-Net 3+, which incorporates the full-scale skip connections and deep supervisions, was proposed for automatic extraction of coronary arteries from ICAs. Transfer learning and a hybrid loss function were employed in this novel coronary artery extraction framework. Results. A data set containing 616 ICAs obtained from 210 patients was used. In the technical evaluation, the U-Net 3+ achieved a Dice score of 0.8942 and a sensitivity of 0.8735, which is higher than U-Net ++ (Dice score: 0.8814, the sensitivity of 0.8331) and U-net (Dice score: 0.8799, the sensitivity of 0.8305). Conclusion. Our study demonstrates that the U-Net 3+ is superior to other segmentation frameworks for the automatic extraction of the coronary arteries from ICAs. This result suggests great promise for clinical use.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源