论文标题
通过分子动力学建模的纳米级铁电域的动态稳定性
Dynamic stability of nano-scale ferroelectric domains by molecular dynamics modeling
论文作者
论文摘要
对于许多设备,超密集的结构壁越来越重要,但是它们的微观特性到目前为止尚未完全了解。在这项研究中,我们结合了原子和粗粒的分子动力学模拟,以研究原型铁电batio3中的域壁稳定性。我们将对域驱动的成核和域壁运动的讨论转移到没有外部驱动力的情况下的热诱导壁修饰中。我们的模拟表明,域壁动力学和稳定性至关重要取决于微观的热波动。域壁上的波动增强可能会导致临界核形成域壁的永久移动。如果两个域壁很近 - 换句话说,当域很小时 - 热波动就足以使域壁接触并导致小域的an灭。这甚至远低于Curie温度,并且当域壁最初相距至6个单位电池时。因此,如此小的域不稳定,并且限制了纳米电机设备中最大可实现的域壁密度。
Ultra-dense domain walls are increasingly important for many devices but their microscopic properties are so far not fully understood. In this study we combine atomistic and coarse-grained molecular dynamic simulations to study the domain wall stability in the prototypical ferroelectric BaTiO3. We transfer the discussion of the field-driven nucleation and motion of domain walls to thermally induced modifications of the wall without an external driving force. Our simulations show that domain wall dynamics and stability depend crucially on microscopic thermal fluctuations. Enhanced fluctuations at domain walls may result in the formation of critical nuclei for the permanent shift of the domain wall. If two domain walls are close - put in other words, when domains are small - thermal fluctuations can be sufficient to bring domain walls into contact and lead to the annihilation of small domains. This is even true well below the Curie temperature and when domain walls are initially as far apart as 6 unit cells. Such small domains are, thus, not stable and limit the maximum achievable domain wall density in nanoelectronic devices.