论文标题

相交的近距离空间:欧洲电力系统对天气变异性具有更大的弹性

Intersecting near-optimal spaces: European power systems with more resilience to weather variability

论文作者

Grochowicz, Aleksander, van Greevenbroek, Koen, Benth, Fred Espen, Zeyringer, Marianne

论文摘要

我们建议一种设计可靠能源系统的新方法。为此,我们研究了能源系统优化模型所谓的近乎最佳解决方案。目标值仅略微偏离最佳的解决方案。使用一种精致的方法来获得这些近乎最佳可行空间的明确几何描述,我们发现设计的设计尽可能可靠。这有助于关于如何在能源系统建模中定义和使用鲁棒性的持续辩论。我们在使用数十年的天气数据的调查中应用了我们的方法。我们首次运行了欧洲电力系统(每个国家的一个节点)的容量扩展模型,其时间分辨率为3小时,并具有41年的天气数据。虽然具有41个天气年份的优化是计算可行性的限制,但我们使用单年的近乎最理想的可行空间来了解全职期间的设计空间。具体而言,我们将各个年份的所有近乎最佳的可行空间与所有近乎最佳的可行空间相交,以便获得整个时间段内可能是可行的设计。我们发现投资灵活性的巨大潜力,并通过使用四十年的天气数据模拟所得的调度问题来验证这些设计的可行性。它们的特征是向更多的陆上风能和太阳能转移,而在此期间的成本优势解决方案中,发射的$ co_2 $最多要低50%。我们的工作以该领域的最新发展为基础,包括建模诸如生成替代方案和建模所有替代方案之类的技术,并为近乎最佳可行空间的几何形状提供了新的见解,以及对能源系统设计多十年的天气变异性的重要性。我们还提供了一种有效的方式,以高度平行的方式与多十年的时间范围合作。

We suggest a new methodology for designing robust energy systems. For this, we investigate so-called near-optimal solutions to energy system optimisation models; solutions whose objective values deviate only marginally from the optimum. Using a refined method for obtaining explicit geometric descriptions of these near-optimal feasible spaces, we find designs that are as robust as possible to perturbations. This contributes to the ongoing debate on how to define and work with robustness in energy systems modelling. We apply our methods in an investigation using multiple decades of weather data. For the first time, we run a capacity expansion model of the European power system (one node per country) with a 3-hourly temporal resolution with 41 years of weather data. While an optimisation with 41 weather years is at the limits of computational feasibility, we use the near-optimal feasible spaces of single years to gain an understanding of the design space over the full time period. Specifically, we intersect all near-optimal feasible spaces for the individual years in order to get designs that are likely to be feasible over the entire time period. We find significant potential for investment flexibility, and verify the feasibility of these designs by simulating the resulting dispatch problem with four decades of weather data. They are characterised by a shift towards more onshore wind and solar power, while emitting up to 50% less $CO_2$ than a cost-optimal solution over that period. Our work builds on recent developments in the field, including techniques such as Modelling to Generate Alternatives and Modelling All Alternatives, and provides new insights into the geometry of near-optimal feasible spaces and the importance of multi-decade weather variability for energy systems design. We also provide an effective way of working with a multi-decade time frame in a highly parallelised manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源