论文标题
高对称性AU纳米颗粒的边缘能量的机器学习
Machine Learning for the edge energies of high symmetry Au nanoparticles
论文作者
论文摘要
我们为金纳米结构提供了数据驱动的模拟,并开发了将总能量与粒子的几何特征联系起来的模型,并最终目标是获取可靠的金色边缘能量。假设可以将总能量分解为批量,表面,边缘和顶点的贡献,我们使用机器学习来实现相关系数的可靠多变量拟合。提出的使用机器学习的总能量计算的方法几乎可以产生类似Ab-Initio的精度,而计算成本最少。此外,引入了边缘能量的明确定义和指标,以避免纳米结构中边缘长度的麻烦定义。对于(100)/(100)边缘的边缘能量密度的结果为0.22 eV/Å,(111)/(111)边缘为0.20 eV/Å。计算出的顶点能量约为1 eV/原子。目前的方法可以很容易地扩展到其他金属和边缘方向以及任意的纳米颗粒形状。
We present data-driven simulations for gold nanostructures, and develop a model that links total energy to geometrical features of the particle, with the ultimate goal of deriving reliable edge energies of gold. Assuming that the total energy can be decomposed into contributions from the bulk, surfaces, edges, and vertices, we use machine learning for reliable multi-variant fits of the associated coefficients. The proposed method of total energy calculations using machine learning produces almost ab-initio-like accuracy with minimal computational cost. Furthermore, a clear definition and metric for edge energy is introduced for edge-energy density calculations that avoid the troublesome definition of edge length in nanostructures. Our results for edge-energy density are 0.22 eV/Å for (100)/(100) edges and 0.20 eV/Å for (111)/(111) edges. Calculated vertex energies are about 1 eV/atom. The present method can be readily extended to other metals and edge orientations as well as arbitrary nanoparticle shapes.