论文标题

参数化不稳定Stokes方程的时空减少基础方法

Space-time reduced basis methods for parametrized unsteady Stokes equations

论文作者

Tenderini, Riccardo, Mueller, Nicholas, Deparis, Simone

论文摘要

在这项工作中,我们分析了时空降低的基础方法,用于对动脉血流动力学的有效数值模拟。还原方法(RB)方法的经典公式具有降低空间的维度,而有限的差异方案用于所产生的普通微分方程(ODE)的时间整合。时空降低基础(ST-RB)方法将尺寸降低范式扩展到时间维度,将全阶问题投射到低维时空的子空间上。我们的目标是研究ST-RB方法在不稳定不可压缩的Stokes方程中的应用,特别关注稳定性。使用有限元(FE)方法和BDF2作为时间行进方案进行高保真模拟。我们考虑两种不同的ST-RB方法。在第一个 - 称为ST -GRB - 时空模型订单降低中,可以通过Galerkin投影实现;引入了时空速度基础富集程序以确保稳定性。第二种方法(称为ST-PGRB)的特征是petrov- galerkin投影,源于FOM残留物的合适最小化,可以自动实现稳定性。经典的RB方法(表示为SRB -TFO)是理论发展的基准。已经在理想化的对称分叉几何形状和患者特定的股骨旁路之一上进行了数值测试。结果表明,这两种ST-RB方法都提供了高保真解决方案的准确近似值,同时大大降低了计算成本。特别是,ST-PGRB方法表现出最佳性能,因为它具有更好的计算效率,同时根据理论期望保持准确性。

In this work, we analyse space-time reduced basis methods for the efficient numerical simulation of hemodynamics in arteries. The classical formulation of the reduced basis (RB) method features dimensionality reduction in space, while finite differences schemes are employed for the time integration of the resulting ordinary differential equation (ODE). Space-time reduced basis (ST-RB) methods extend the dimensionality reduction paradigm to the temporal dimension, projecting the full-order problem onto a low-dimensional spatio-temporal subspace. Our goal is to investigate the application of ST-RB methods to the unsteady incompressible Stokes equations, with a particular focus on stability. High-fidelity simulations are performed using the Finite Element (FE) method and BDF2 as time marching scheme. We consider two different ST-RB methods. In the first one - called ST-GRB - space-time model order reduction is achieved by means of a Galerkin projection; a spatio-temporal velocity basis enrichment procedure is introduced to guarantee stability. The second method - called ST-PGRB - is characterized by a Petrov--Galerkin projection, stemming from a suitable minimization of the FOM residual, that allows to automatically attain stability. The classical RB method - denoted as SRB-TFO - serves as a baseline for the theoretical development. Numerical tests have been conducted on an idealized symmetric bifurcation geometry and on the patient-specific one of a femoropopliteal bypass. The results show that both ST-RB methods provide accurate approximations of the high-fidelity solutions, while considerably reducing the computational cost. In particular, the ST-PGRB method exhibits the best performance, as it features a better computational efficiency while retaining accuracies in accordance with theoretical expectations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源