论文标题

Treedrnet:长期序列预测的强大深层模型

TreeDRNet:A Robust Deep Model for Long Term Time Series Forecasting

论文作者

Zhou, Tian, Zhu, Jianqing, Wang, Xue, Ma, Ziqing, Wen, Qingsong, Sun, Liang, Jin, Rong

论文摘要

各种深度学习模型,尤其是一些最新的基于一些基于变压器的方法,已大大提高了长期时间序列预测的最新表现。但是,这些基于变压器的模型遭受了严重的变质性能,并长期输入长度,禁止它们使用扩展的历史信息。更多的历史信息,这些方法在长期易于效果中的长期预测较小,这在较大的模型中且在较小的模型中的易于提高,从而增加了一项重要的模型,这是一种重要的计算。性能(例如,过拟合)。我们提出了一种新型的神经网络架构,称为Treedrnet,以进行更有效的长期预测。受强大的回归启发,我们引入了双重残留的链接结构,以使预测更加稳健。对Kolmogorov-Arnold表示定理进行了构建,我们明确地介绍了特征选择,模型集合和树结构,以进一步利用扩展输入序列,从而提高了Treedrnet的可靠性和表示功能。与以前的顺序预测工作的深层模型不同,Treedrnet完全建立在多层感知下,因此具有很高的计算效率。我们广泛的实证研究表明,Treedrnet比最先进的方法明显更有效,在多元时间序列中,预测错误降低了20%至40%。特别是,Treedrnet的效率比基于变压器的方法高10倍以上。该代码将很快发布。

Various deep learning models, especially some latest Transformer-based approaches, have greatly improved the state-of-art performance for long-term time series forecasting.However, those transformer-based models suffer a severe deterioration performance with prolonged input length, which prohibits them from using extended historical info.Moreover, these methods tend to handle complex examples in long-term forecasting with increased model complexity, which often leads to a significant increase in computation and less robustness in performance(e.g., overfitting). We propose a novel neural network architecture, called TreeDRNet, for more effective long-term forecasting. Inspired by robust regression, we introduce doubly residual link structure to make prediction more robust.Built upon Kolmogorov-Arnold representation theorem, we explicitly introduce feature selection, model ensemble, and a tree structure to further utilize the extended input sequence, which improves the robustness and representation power of TreeDRNet. Unlike previous deep models for sequential forecasting work, TreeDRNet is built entirely on multilayer perceptron and thus enjoys high computational efficiency. Our extensive empirical studies show that TreeDRNet is significantly more effective than state-of-the-art methods, reducing prediction errors by 20% to 40% for multivariate time series. In particular, TreeDRNet is over 10 times more efficient than transformer-based methods. The code will be released soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源