论文标题
计算本地对称空间同源性的平坦周期
Counting flat cycles in the homology of locally symmetric spaces
论文作者
论文摘要
本地对称空间,例如$ sl(n,\ mathbb z)\ backslash sl_n(\ mathbb r)/so(n)$包含浸没的尺寸的浸没的紧凑型平面流形等于实际等级。我们为这些周期对一致性覆盖的同源性的贡献提供了下限。对于其他局部对称空间的家族,也证明了类似的结果。
Locally symmetric spaces like $SL(n,\mathbb Z)\backslash SL_n(\mathbb R)/SO(n)$ contain immersed compact flat manifolds of dimension equal to the real rank. We give a lower bound for the contribution of these cycles to the homology of congruence covers. Similar results are proved for other families of locally symmetric spaces.