论文标题

拓扑tri-hihinge物质中的域墙

Domain Walls in Topological Tri-hinge Matter

论文作者

Drissi, Lalla Btissam, Saidi, El Hassan

论文摘要

使用图理论与托管高阶拓扑问题的几何形状之间的联系,我们填补了部分缺少的结果,该域壁的工程墙支持了三个垂直铰链的系统。容纳负责物理特性的粒子状态的骨架矩阵由Euler特性分为三组,拓扑索引$χ= 0,1,2。$ a Tri-hishe hamiltonian模型在复合$ \ boldsymbol {m} _ {m} _ {1} _ {1} \ boldsymbol {1} \ boldsymbol {1} \ boldsymbol {t} $ {t} $, $ \ boldsymbol {m} _ {2} \ boldsymbol {t} $,$ \ boldsymbol {m} _ {3} \ boldsymbol {t} $是建立的。在此框架中,$ \ boldsymbol {t} $是逆转对称性的时间,$ \ boldsymbol {t}^{2} = - i $和$ \ boldsymbol {m} _ {i} $是二直diia $ \ niia $ \ niian of trry的生成器的生成者。为了捕获三个国家,建议候选材料,从而为调查和设计可抵抗疾病和变形的强大材料开辟了各种可能性。

Using a link between graph theory and the geometry hosting higher order topological matter, we fill part of the missing results in the engineering of domain walls supporting gapless states for systems with three vertical hinges. The skeleton matrices which house the particle states responsible for the physical properties are classified by the Euler characteristic into three sets with topological index $χ=0,1,2.$ A tri-hinge hamiltonian model invariant under the composite $\boldsymbol{M}_{1}\boldsymbol{T}$, $\boldsymbol{M}_{2}\boldsymbol{T}$, $\boldsymbol{M}_{3}\boldsymbol{T}$ is built. In this framework, $\boldsymbol{T}$ is the time reversing symmetry obeying $\boldsymbol{T}^{2}=-I$ and the $\boldsymbol{M}_{i}$'s are the generators of the three reflections of the dihedral $\mathbb{D}_{3}$ symmetry of triangle. To capture the tri-hinge states, candidate materials are suggested, thus opening up a variety of possibilities for investigating and designing robust materials against disorder and deformation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源