论文标题
与交互式量子量子变异算法学习量子对称性
Learning quantum symmetries with interactive quantum-classical variational algorithms
论文作者
论文摘要
状态$ \vertψ\ rangle $的对称性是统一运算符,其中$ \vertψ\ rangle $是特征向量。当$ \vertψ\ rangle $是黑盒甲骨文提供的未知状态时,该州的对称性提供了对量子系统的关键物理洞察力;对称性还提高了许多关键的量子学习技术。在本文中,我们开发了一种变性混合量子 - 古典学习方案,以系统地探测$ \vertψ\ rangle $的对称性,而没有对状态的先验假设。此过程可用于同时学习各种对称性。为了避免重新学习已经知道的对称性,我们引入了一种具有经典深神网的交互式协议。因此,经典的网络针对重复的发现进行了正规化,并允许我们的算法通过发现的所有可能的对称性终止经验。我们的方案可以平均通过非本地交换门有效地实施;我们还提供了仅使用本地操作的效率较低的算法,这可能更适合当前的噪声量子设备。我们将算法模拟在代表性的国家,包括瑞德伯格和伊辛·哈密顿人的基础状态。我们还发现,数值查询复杂性随量子大小而言很好。
A symmetry of a state $\vert ψ\rangle$ is a unitary operator of which $\vert ψ\rangle$ is an eigenvector. When $\vert ψ\rangle$ is an unknown state supplied by a black-box oracle, the state's symmetries provide key physical insight into the quantum system; symmetries also boost many crucial quantum learning techniques. In this paper, we develop a variational hybrid quantum-classical learning scheme to systematically probe for symmetries of $\vert ψ\rangle$ with no a priori assumptions about the state. This procedure can be used to learn various symmetries at the same time. In order to avoid re-learning already known symmetries, we introduce an interactive protocol with a classical deep neural net. The classical net thereby regularizes against repetitive findings and allows our algorithm to terminate empirically with all possible symmetries found. Our scheme can be implemented efficiently on average with non-local SWAP gates; we also give a less efficient algorithm with only local operations, which may be more appropriate for current noisy quantum devices. We simulate our algorithm on representative families of states, including cluster states and ground states of Rydberg and Ising Hamiltonians. We also find that the numerical query complexity scales well with qubit size.