论文标题
恒星角动量可以从宇宙学初始条件中控制
Stellar angular momentum can be controlled from cosmological initial conditions
论文作者
论文摘要
星系的角动量控制着恒星的运动学,这又驱动了可观察到的数量,例如明显的半径,凸起部分以及与附近其他结构的对齐。为了展示如何确定星系的角动量,我们建立了高($ {35} \,\ mathrm {pc} $)分辨率的数值实验,其中我们会增加或减少早期宇宙中拉格朗日斑块的角动量。我们在其历史上模拟了三个星系从$ z = 200 $到$ z = 2 $,每个星系对于角动量有五种不同的选择(总共十五个模拟)。我们的结果表明,改变早期的角度动量会改变合并的时间和轨道参数,从而以可预测的方式改变了银河系病毒半径内的总恒星角动量。在我们的三个星系中,一个没有$ z = 2 $的大卫星;在这种情况下,特定的角动量集中在中央星系中。 We modify its stellar angular momentum over $0.7\,\mathrm{dex}$ (from $61$ to $320\,\mathrm{kpc.km.s^{-1}}$) and show that this causes its effective radius to grow by $40\,\%$, its $v/σ$ parameter to grow by a factor $\times 2.6$ and its bulge fraction从$ 0.72 $降低到$ 0.57 $。控制角动量的能力将使未来的研究能够探测星系质量,角动量和形态之间缩放关系的因果关系,并更好地理解银河系内在比对的起源。
The angular momentum of galaxies controls the kinematics of their stars, which in turn drives observable quantities such as the apparent radius, the bulge fraction, and the alignment with other nearby structures. To show how angular momentum of galaxies is determined, we build high (${35}\,\mathrm{pc}$) resolution numerical experiments in which we increase or decrease the angular momentum of the Lagrangian patches in the early universe. We simulate three galaxies over their histories from $z=200$ to $z=2$, each with five different choices for the angular momentum (fifteen simulations in total). Our results show that altering early-universe angular momentum changes the timing and orbital parameters of mergers, which in turn changes the total stellar angular momentum within a galaxy's virial radius in a predictable manner. Of our three galaxies, one has no large satellite at $z=2$; in this case, the specific angular momentum is concentrated in the central galaxy. We modify its stellar angular momentum over $0.7\,\mathrm{dex}$ (from $61$ to $320\,\mathrm{kpc.km.s^{-1}}$) and show that this causes its effective radius to grow by $40\,\%$, its $v/σ$ parameter to grow by a factor $\times 2.6$ and its bulge fraction to decrease from $0.72$ to $0.57$. The ability to control angular momentum will allow future studies to probe the causal origin of scaling relations between galaxy mass, angular momentum and morphology, and to better understand the origin of galactic intrinsic alignments.