论文标题

用于各向异性分数Sobolev空间的Bourgain-Brezis-Mironescu公式,并应用于各向异性分数微分方程

A Bourgain-Brezis-Mironescu formula for anisotropic fractional Sobolev spaces and applications to anisotropic fractional differential equations

论文作者

Dussel, Ignacio Ceresa, Bonder, Julian Fernandez

论文摘要

在本文中,我们证明了Bourgain-Brezis-Mironescu的类型结果(参见\ Cite {BBM2001})(简称BBM),用于与分数各向异性P-Laplacian密切相关的能量功能。我们还提供了MAZ'AYA-SHAPOSHNIKOVA(参见\ cite {MS})的类似于这些能量的结果,最后我们应用这些结果来分析解决方案对各向异性分数$ p-p- $ laplacian方程的稳定性。

In this paper we prove Bourgain-Brezis-Mironescu's type results (cf. \cite{BBM2001}) (BBM for short) for an energy functional which is strongly related to the fractional anisotropic p-Laplacian. We also provide with the analogous of Maz'ya-Shaposhnikova (see \cite{MS}) type results for these energies and finally we apply these results to analyze the stability of solutions to anisotropic fractional $p-$laplacian equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源