论文标题
拉格朗日拉伸揭示了粘弹性流中的应力拓扑
Lagrangian stretching reveals stress topology in viscoelastic flows
论文作者
论文摘要
粘弹性流在许多自然和工业过程中普遍存在,非线性和时间依赖性动力学的出现调节流动抗性,能量消耗和颗粒物分散。由悬浮聚合物的对流和拉伸引起的聚合应力反馈基础流体流,这最终决定了粘弹性流体的动力学,不稳定性和转运性能。但是,应力场的直接实验量化是具有挑战性的,并且对拉格朗日流量结构如何调节聚合应激的分布的基本了解。在这项工作中,我们表明聚合应力场的拓扑精确地反映了拉格朗日拉伸场,后者仅取决于流动运动学。我们开发了一种一般的分析表达,该表达直接与非线性和非稳态流的弱粘弹性流体中的聚合应力和拉伸,这也扩展到具有强运动学特征的特殊情况。此外,数值模拟揭示了应力和拉伸场拓扑之间的明显相关性,该拓扑是在广泛的几何形状上不稳定的粘弹性流。最终,我们的结果建立了欧拉应力场与粘弹性流的拉格朗日结构之间的联系。这项工作提供了一个简单的框架,可以直接从易于测量的流场数据直接确定聚合应力的拓扑结构,并为将聚合物应力与流传输特性直接联系起来奠定了基础。
Viscoelastic flows are pervasive in a host of natural and industrial processes, where the emergence of nonlinear and time-dependent dynamics regulate flow resistance, energy consumption, and particulate dispersal. Polymeric stress induced by the advection and stretching of suspended polymers feeds back on the underlying fluid flow, which ultimately dictates the dynamics, instability, and transport properties of viscoelastic fluids. However, direct experimental quantification of the stress field is challenging, and a fundamental understanding of how Lagrangian flow structure regulates the distribution of polymeric stress is lacking. In this work, we show that the topology of the polymeric stress field precisely mirrors the Lagrangian stretching field, where the latter depends solely on flow kinematics. We develop a general analytical expression that directly relates the polymeric stress and stretching in weakly viscoelastic fluids for both nonlinear and unsteady flows, which is also extended to special cases characterized by strong kinematics. Furthermore, numerical simulations reveal a clear correlation between the stress and stretching field topologies for unstable viscoelastic flows across a broad range of geometries. Ultimately, our results establish a connection between the Eulerian stress field and the Lagrangian structure of viscoelastic flows. This work provides a simple framework to determine the topology of polymeric stress directly from readily measurable flow field data and lays the foundation for directly linking the polymeric stress to flow transport properties.