论文标题
分类MOSI $ _2 $ n $ _4 $和WSI $ _2 $ n $ _4 $ van der waals异质结构:激发型太阳能电池应用程序的非凡材料平台
Cataloguing MoSi$_2$N$_4$ and WSi$_2$N$_4$ van der Waals Heterostructures: An Exceptional Material Platform for Excitonic Solar Cell Applications
论文作者
论文摘要
二维(2D)材料Van der Waals异质结构(VDWH)为超出常规硅的PN连接太阳能电池以外的高性能太阳能转换设备提供了革命性的途径。尽管近年来取得了巨大的研究进展,但对具有出色激发太阳能电池转换效率和光学特性的VDWH的搜索仍然是一个开放的理论和实验性追求。在这里,我们显示由Mosi $ _2 $ n $ _4 $和WSI $ _2 $ N $ _4 $单层组成的VDWH家族为开发高性能超薄激素太阳能电池和光子设备提供了引人入胜的材料平台。使用第一原理计算,我们构建和分类51种MOSI $ _2 $ n $ _4 $和WSI $ _2 $ _2 $ n $ _4 $ _4 $ - 基于[(MO,W)SI $ _2 $ _2 $ N $ _4 $] VDWHS由各种金属,半金属,半质量,半核,半导体,绝缘和隔媒体和隔媒体和媒体材料组成。有趣的是,Mosi $ _2 $ n $ _4 $/(INSE,WSE $ _2 $)被确定为II型VDWHS,具有出色的激发型太阳能电池电池电源转换效率,达到超过20%,这与武器先进的硅太阳能电池具有竞争力。 (MO,W)SI $ _2 $ N $ _4 $ VDWH家族在可见光和紫外线方面都表现出强烈的光吸收。超过40%以上的极峰紫外吸收,接近自由居住的2D材料的最大吸收极限,可以在(MO,W)Si $ _2 $ _2 $ _4 $ _4 $ _4 $ _4 $ _4 $ _4 $ _2 $ - (MO,W)GE $ _2 $ _2 $ _2 $ _2 $ p $ _4 $ _4 $ _4 $ _4 $ vdwhs。我们的发现揭示了(Mo,w)Si $ _2 $ n $ _4 $ vdwhs在设计最终紧凑的激子太阳能电池设备技术方面的巨大潜力。
Two-dimensional (2D) materials van der Waals heterostructures (vdWHs) provides a revolutionary route towards high-performance solar energy conversion devices beyond the conventional silicon-based pn junction solar cells. Despite tremendous research progress accomplished in recent years, the searches of vdWHs with exceptional excitonic solar cell conversion efficiency and optical properties remain an open theoretical and experimental quest. Here we show that the vdWH family composed of MoSi$_2$N$_4$ and WSi$_2$N$_4$ monolayers provides a compelling material platform for developing high-performance ultrathin excitonic solar cells and photonics devices. Using first-principle calculations, we construct and classify 51 types of MoSi$_2$N$_4$ and WSi$_2$N$_4$-based [(Mo,W)Si$_2$N$_4$] vdWHs composed of various metallic, semimetallic, semiconducting, insulating and topological 2D materials. Intriguingly, MoSi$_2$N$_4$/(InSe, WSe$_2$) are identified as Type-II vdWHs with exceptional excitonic solar cell power conversion efficiency reaching well over 20%, which are competitive to state-of-art silicon solar cells. The (Mo,W)Si$_2$N$_4$ vdWH family exhibits strong optical absorption in both the visible and ultraviolet regimes. Exceedingly large peak ultraviolet absorptions over 40%, approaching the maximum absorption limit of a free-standing 2D material, can be achieved in (Mo,W)Si$_2$N$_4$/$α_2$-(Mo,W)Ge$_2$P$_4$ vdWHs. Our findings unravel the enormous potential of (Mo,W)Si$_2$N$_4$ vdWHs in designing ultimately compact excitonic solar cell device technology.