论文标题
自由费米子的拉链纠缠重新归一化
Zipper Entanglement Renormalization for Free Fermions
论文作者
论文摘要
纠缠重新规定是指一系列真实空间的粗粒粒度转换,其中短距离纠缠不断地蒸馏出更长的长度尺度。在这项工作中,我们引入了一种基于州的方法,“拉链纠缠重新归一化”(ZER),用于自由屈服系统。该名称源自我们在每个重新规范化步骤中构建的单一统一,称为拉链,该步骤将状态解压缩为短距离纠缠状态与携带长距离纠缠的重新归一化的状态之间的近似张量产物。通过依次在重量化的状态下执行ZER,我们获得了输入状态的单一转换,该状态近似于在新兴的重生时段上被近似分解。作为演示,我们将ZER应用于一维模型,并表明它有效地解开了Su-Schrieffer-Heeger模型的基态,Su-Schrieffer-Heeger模型是一种规模不变的临界状态,以及更一般的无间隙状态,具有两组Fermi点。
Entanglement renormalization refers to a sequence of real-space coarse-graining transformations in which short-range entanglement on successively longer length scales are distilled out. In this work, we introduce a state-based approach, "zipper entanglement renormalization" (ZER), for free-fermion systems. The name derives from a unitary we construct at every renormalization step, dubbed the zipper, which unzips the state into an approximate tensor product between a short-range entangled state and a renormalized one carrying the longer-range entanglement. By successively performing ZER on the renormalized states, we obtain a unitary transformation of the input state into a state that is approximately factorized over the emergent renormalization spacetime. As a demonstration, we apply ZER to one-dimensional models and show that it efficiently disentangles the ground states of the Su-Schrieffer-Heeger model, a scale-invariant critical state, as well as a more general gapless state with two sets of Fermi points.