论文标题

朝着端到端的私人自动扬声器识别

Towards End-to-End Private Automatic Speaker Recognition

论文作者

Teixeira, Francisco, Abad, Alberto, Raj, Bhiksha, Trancoso, Isabel

论文摘要

保护隐私的自动扬声器验证系统的开发一直是许多研究的重点,目的是允许用户对自己进行身份验证,而不会冒着声音隐私的危险。但是,当前保留隐私的方法假定用于身份验证的模板语音表示(或说话者嵌入)是由用户本地提取的。这提出了两个重要问题:首先,对嵌入提取模型的说话者的知识可能会为身份验证系统创造安全性和稳健性负债,因为这些知识可能会帮助攻击者制定能够误导该系统的对抗性示例;其次,从服务提供商的角度来看,嵌入提取模型的说话者可以说是系统中最有价值的组件之一,因此,它揭示了它是不可取的。在这项工作中,我们展示了如何使用安全的多方计算来保持说话者的嵌入方式,同时保持说话者的声音和服务提供商的模型私有。此外,我们表明可以在安全成本和计算成本之间进行合理的权衡。这项工作与那些显示如何私下执行身份验证的人相辅相成,因此可以被视为迈向完全私人自动扬声器识别的又一步。

The development of privacy-preserving automatic speaker verification systems has been the focus of a number of studies with the intent of allowing users to authenticate themselves without risking the privacy of their voice. However, current privacy-preserving methods assume that the template voice representations (or speaker embeddings) used for authentication are extracted locally by the user. This poses two important issues: first, knowledge of the speaker embedding extraction model may create security and robustness liabilities for the authentication system, as this knowledge might help attackers in crafting adversarial examples able to mislead the system; second, from the point of view of a service provider the speaker embedding extraction model is arguably one of the most valuable components in the system and, as such, disclosing it would be highly undesirable. In this work, we show how speaker embeddings can be extracted while keeping both the speaker's voice and the service provider's model private, using Secure Multiparty Computation. Further, we show that it is possible to obtain reasonable trade-offs between security and computational cost. This work is complementary to those showing how authentication may be performed privately, and thus can be considered as another step towards fully private automatic speaker recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源