论文标题
AST探针:从预训练语言模型的隐藏表示中恢复抽象语法树
AST-Probe: Recovering abstract syntax trees from hidden representations of pre-trained language models
论文作者
论文摘要
预训练的语言模型的目的是学习文本数据的上下文表示。预训练的语言模型已成为自然语言处理和代码建模的主流。使用探针,一种研究隐藏矢量空间的语言特性的技术,以前的作品表明,这些预训练的语言模型在其隐藏表示中编码了简单的语言特性。但是,以前的工作都没有评估这些模型是否编码编程语言的整个语法结构。在本文中,我们证明存在句法子空间,该子空间位于预训练的语言模型的隐藏表示中,其中包含编程语言的句法信息。我们表明,可以从模型的表示形式中提取此子空间,并定义一种新颖的探测方法AST-Probe,该方法可以恢复输入代码片段的整个抽象语法树(AST)。在我们的实验中,我们表明这种句法子空间存在于五个最先进的预训练的语言模型中。此外,我们强调说,模型的中间层是编码大多数AST信息的模型。最后,我们估计该句法子空间的最佳大小,并表明其尺寸大大低于模型的表示空间。这表明,预训练的语言模型使用其表示空间的一小部分来编码编程语言的句法信息。
The objective of pre-trained language models is to learn contextual representations of textual data. Pre-trained language models have become mainstream in natural language processing and code modeling. Using probes, a technique to study the linguistic properties of hidden vector spaces, previous works have shown that these pre-trained language models encode simple linguistic properties in their hidden representations. However, none of the previous work assessed whether these models encode the whole grammatical structure of a programming language. In this paper, we prove the existence of a syntactic subspace, lying in the hidden representations of pre-trained language models, which contain the syntactic information of the programming language. We show that this subspace can be extracted from the models' representations and define a novel probing method, the AST-Probe, that enables recovering the whole abstract syntax tree (AST) of an input code snippet. In our experimentations, we show that this syntactic subspace exists in five state-of-the-art pre-trained language models. In addition, we highlight that the middle layers of the models are the ones that encode most of the AST information. Finally, we estimate the optimal size of this syntactic subspace and show that its dimension is substantially lower than those of the models' representation spaces. This suggests that pre-trained language models use a small part of their representation spaces to encode syntactic information of the programming languages.