论文标题

分组C* - 代数和离散组共同体中正常仪的子模块

Submodules of normalisers in groupoid C*-algebras and discrete group coactions

论文作者

Komura, Fuyuta

论文摘要

在本文中,我们研究了与有效典型类固醇相关的C* - 代数中的某些子模型。首先,我们表明,正常化器生成的子模块是在某些开放式设置上关闭一组紧凑型连续功能的封闭。作为推论,我们表明,如果固定点代数包含连续函数的C*-subalgebras,则在单位空间上消失的连续函数消失的c* - subalgebras,étalegroupoids上的c* - 代代代代数的离散组共同体会诱导。在后一部分中,我们证明了GALOIS对应的结果,用于分组C*-Algebras上的离散组共同。

In this paper, we investigate certain submodules in C*-algebras associated to effective étale groupoids. First, we show that a submodule generated by normalizers is a closure of the set of compactly supported continuous functions on some open set. As a corollary, we show that discrete group coactions on groupoid C*-algebras are induced by cocycles of étale groupoids if the fixed point algebras contain C*-subalgebras of continuous functions vanishing at infinity on the unit spaces. In the latter part, we prove the Galois correspondence result for discrete group coactions on groupoid C*-algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源