论文标题

有限量的夸克和试验

Quarks and Triality in a Finite Volume

论文作者

Ghanbarpour, Milad, von Smekal, Lorenz

论文摘要

为了了解QCD中单个夸克的自由能的难题,我们明确地构建了具有夸克号的合奏$ n_v \ neq 0 \!\ mod 3 $,对应于晶格中有限的子volume $ v $中的非零试验性。我们首先在有效的Polyakov-loop理论中说明了QCD重密度极限的基本思想,然后将构造扩展到完整的晶格QCD,在该QCD中,必须始终固定电动中心通量贯穿$ v $的表面,以计算高斯定律。这就需要在所有随后的时间片之间的空间体积$ v $上引入离散的傅立叶变换,并在吹扫量表理论中概括了't Hooft的电通量的构建。我们从Wilson Fermion动作的双重化以及带有本地$ \ Mathbb Z_3 $ -Gauss Law的转移矩阵配方中得出了相同的结果,以将动态限制在$ v $中所需的中心费用。

In order to understand the puzzle of the free energy of an individual quark in QCD, we explicitly construct ensembles with quark numbers $N_V\neq 0\!\mod 3$, corresponding to non-zero triality in a finite subvolume $V$ on the lattice. We first illustrate the basic idea in an effective Polyakov-loop theory for the heavy-dense limit of QCD, and then extend the construction to full Lattice QCD, where the electric center flux through the surface of $V$ has to be fixed at all times to account for Gauss's law. This requires introducing discrete Fourier transforms over closed center-vortex sheets around the spatial volume $V$ between all subsequent time slices, and generalizes the construction of 't Hooft's electric fluxes in the purge gauge theory. We derive this same result from a dualization of the Wilson fermion action, and from the transfer matrix formulation with a local $\mathbb Z_3$-Gauss law to restrict the dynamics to sectors with the required center charge in $V$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源