论文标题

关于复杂的投影空间上特殊通用图的不存在

On the non-existence of special generic maps on complex projective spaces

论文作者

Kitazawa, Naoki

论文摘要

我们证明了在复杂的投影空间上不存在特殊通用图作为我们扩展的新结果。 最简单的特殊通用图是摩尔斯的功能,在球体上具有两个单数点,或者在Reeb定理中的摩尔斯函数以及单位球体的规范投影。 在大量情况下,歧管与单位球​​的歧管差异的产物总和相关的歧管总和承认了这些地图。 在大多数情况下,现实且复杂的投影空间已证明在大多数情况下都不承认此类地图。这为复杂的投影空间提供了完整的答案,作为更普遍的结果的推论,这也是我们的主要结果。

We prove the non-existence of special generic maps on complex projective space as our extended new result. Simplest special generic maps are Morse functions with exactly two singular points on spheres, or Morse functions in Reeb's theorem, and canonical projections of unit spheres. Manifolds represented as connected sums of products of manifolds diffeomorphic to unit spheres admit such maps in considerable cases. Real and complex projective spaces have been shown to admit no such maps in most cases by the author. This gives a complete answer for complex projective spaces as a corollary to a more general result, which is also our main result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源