论文标题

非局限性准扩散系统的全球存在,以非各向同性非差异形式

Global Existence for Nonlocal Quasilinear Diffusion Systems in Non-Isotropic Non-Divergence Form

论文作者

Lo, Catharine W. K., Rodrigues, José Francisco

论文摘要

考虑准线性扩散问题\ [\ begin {case} \ Mathbf {u}'+π(t,x,x,\ mathbf {u},σ\ mathbf {u})\ Math bb {a} \ mathbf {u} = \ mathbf {f}(t,x,x,x,\ mathbf {u},σ\ \ mathbf {u})&\ text { in}] 0,t [\timesΩ,\\\ mathbf {u} = \ mathbf {0}&\ text {in}] 0,t [\ timesmom^c,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ cdot)开放设置$ω\ subset \ mathbb {r}^n $,$ \ \ \ m mathbf {u} _0 \ in \ mathbf {h}^s_0(ω) $σ\ MathBf {u} \ in \ Mathbb {r}^q $对于$ 0 <q \ leq m \ leq m \ times n $表示分数或非局部衍生物,其订单$σ$,$σ<2s $,全部$ 0 <s \ leq1 $,包括经典级别的订单和衍生的序列范围,包括$ 0 <s \ s $ quas,包括各种序列的序列和衍生的序列范围。对于不同的线性操作员$ \ mathbb {a} $,包括局部椭圆系统,各向异性分数方程和系统以及各向异性非局限性运算符,以下类型\ [(\ Mathbb {a} {a} \ Mathbf {u} i = - \partial_α(a^{αβ} _ {ij} \partial_βu^j),\ quad \ mathbb {a} u = - d^s(a(x)d^su),\ quad \ quad \ text \ text {and} \ quad {and} \ quad (\ Mathbb {a} \ MathBf {u})^i = \ int _ {\ MathBb {r}^n} a_ {ij}(x,x,x,y)\ frac {u^j(x)-u^J(x)-U^J(y)-u^J(y)} $π$和合适的矢量函数$ \ mathbf {f} $。

Consider the quasilinear diffusion problem \[\begin{cases}\mathbf{u}'+Π(t,x,\mathbf{u},Σ\mathbf{u})\mathbb{A}\mathbf{u}=\mathbf{f}(t,x,\mathbf{u},Σ\mathbf{u})&\text{ in }]0,T[\timesΩ,\\\mathbf{u}=\mathbf{0}&\text{ in }]0,T[\timesΩ^c,\\\mathbf{u}(0,\cdot)=\mathbf{u}_0(\cdot)&\text{ in }Ω\end{cases}\] for an open set $Ω\subset\mathbb{R}^n$, $\mathbf{u}_0\in \mathbf{H}^s_0(Ω):=[H^s_0(Ω)]^m$ and any $T\in]0,\infty[$, where $Σ\mathbf{u}\in \mathbb{R}^q$ for $0<q\leq m\times n$ represents fractional or nonlocal derivatives with order $σ$ with $σ<2s$ for all $0<s\leq1$, including the classical gradient and derivatives of order greater than 1. We show global existence results for various quasilinear diffusion systems in non-divergence form, for different linear operators $\mathbb{A}$, including local elliptic systems, anisotropic fractional equations and systems, and anisotropic nonlocal operators, of the following type \[(\mathbb{A}\mathbf{u})^i=-\sum _{α,β,j} \partial_α(A^{αβ}_{ij}\partial_βu^j),\quad \mathbb{A}u=- D^s(A(x)D^su),\quad\text{ and }\quad (\mathbb{A}\mathbf{u})^i=\int_{\mathbb{R}^n}A_{ij}(x,y)\frac{u^j(x)-u^j(y)}{|x-y|^{n+2s}}\,dy,\] for coercive, invertible matrices $Π$ and suitable vectorial functions $\mathbf{f}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源