论文标题
速率启动的根跟踪:近似具有较高隐式多元衍生物的溶液曲线
Root Tracking for Rate-Distortion: Approximating a Solution Curve with Higher Implicit Multivariate Derivatives
论文作者
论文摘要
速率曲线捕获了压缩长度与有损耗数据压缩的分辨率之间的基本权衡。但是,它隐藏了最佳源编码或测试通道的基本动力学。我们认为,随着源信息被压缩,这些通常遵循分段平滑轨迹。这些平滑的动态在分叉中被中断,解决方案在定性上发生变化。例如,亚最佳测试通道可能会发生碰撞或交换最优性。通常有大量的亚最佳溶液,这源自对繁殖字母的限制。 我们设计了一个算法系列,该算法会利用基本动力学来跟踪沿速率延伸曲线的给定测试通道。为此,我们通过较高的导数张量在非线性操作员的根部表达隐式衍生物。因此,为Blahut算法的导数张量提供了封闭式公式,从而在给定的测试通道处产生了任意顺序的隐式衍生物,从而近似于其附近的其他衍生物。最后,我们对分叉的理解确保了在温和的假设下,在较小的假设下,扎根的最佳性,同时允许我们检测何时假设失败。 除了对速率失真的利率之外,这是一个示例,说明如何将问题的分叉转化为数值算法。
The rate-distortion curve captures the fundamental tradeoff between compression length and resolution in lossy data compression. However, it conceals the underlying dynamics of optimal source encodings or test channels. We argue that these typically follow a piecewise smooth trajectory as the source information is compressed. These smooth dynamics are interrupted at bifurcations, where solutions change qualitatively. Sub-optimal test channels may collide or exchange optimality there, for example. There is typically a plethora of sub-optimal solutions, which stems from restrictions of the reproduction alphabet. We devise a family of algorithms that exploits the underlying dynamics to track a given test channel along the rate-distortion curve. To that end, we express implicit derivatives at the roots of a non-linear operator by higher derivative tensors. Providing closed-form formulae for the derivative tensors of Blahut's algorithm thus yields implicit derivatives of arbitrary order at a given test channel, thereby approximating others in its vicinity. Finally, our understanding of bifurcations guarantees the optimality of the root being traced, under mild assumptions, while allowing us to detect when our assumptions fail. Beyond the interest in rate distortion, this is an example of how understanding a problem's bifurcations can be translated to a numerical algorithm.