论文标题

剖析巨大恒星半径的金属性依赖性背后的微物理学

Dissecting the microphysics behind the metallicity-dependence of massive stars radii

论文作者

Xin, Chengcheng, Renzo, Mathieu, Metzger, Brian D.

论文摘要

在整个演变中了解大型恒星的半径对于回答有关恒星物理学的许多问题,从主要序列上的二元相互作用到苏佩尔诺诺娃前半径很重要。确定恒星半径的一个重要因素是其质量比氦气重的元素的一部分(金属性,$ z $)。但是,金属性通过几个不同的微物理过程进入了恒星的演变,并且在整个恒星演化中都可以改变,并且总体幅度为$ z $。我们使用15m $ _ {\ odot} $ MESA模型进行了一系列数值实验,分别将金属性分别加倍,进入辐射性不透明度,状态方程和核反应网络,以隔离每种对Stellar Radii的影响。我们探索围绕两个金属性值的单独探索模型:一个靠近太阳能$ z = 0.02 $和另一个亚符号$ z \ sim10^{ - 3} $,并考虑从主序列末端到核心碳耗尽的几个关键时期。我们发现,进入不透明度的金属性在大多数时期都在太阳金属模型上占主导地位,这平均$ \ sim $ \ sim $ 60-90%的恒星半径变化的60-90%。在$ Z $型号的大多数时期,核反应具有更大的影响($ \ sim $ 50-70%)。此处引入的方法可以更普遍地将已知的微物理学错误传播到包括恒星半径在内的巨摩托物可观察物的不确定性中。

Understanding the radii of massive stars throughout their evolution is important to answering numerous questions about stellar physics, from binary interactions on the main sequence to the pre-supernova radii. One important factor determining a star's radius is the fraction of its mass in elements heavier than Helium (metallicity, $Z$). However, the metallicity enters stellar evolution through several distinct microphysical processes, and which dominates can change throughout stellar evolution and with the overall magnitude of $Z$. We perform a series of numerical experiments with 15M$_{\odot}$ MESA models computed doubling separately the metallicity entering the radiative opacity, the equation of state, and the nuclear reaction network to isolate the impact of each on stellar radii. We explore separately models centered around two metallicity values: one near solar $Z=0.02$ and another sub-solar $Z\sim10^{-3}$, and consider several key epochs from the end of the main sequence to core carbon depletion. We find that the metallicity entering the opacity dominates at most epochs for the solar metallicity models, contributing to on average $\sim$60 - 90% of the total change in stellar radius. Nuclear reactions have a larger impact ($\sim$50 - 70%) during most epochs in the subsolar $Z$ models. The methodology introduced here can be employed more generally to propagate known microphysics errors into uncertainties on macrophysical observables including stellar radii.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源