论文标题

Godel:针对目标导向对话的大规模预训练

GODEL: Large-Scale Pre-Training for Goal-Directed Dialog

论文作者

Peng, Baolin, Galley, Michel, He, Pengcheng, Brockett, Chris, Liden, Lars, Nouri, Elnaz, Yu, Zhou, Dolan, Bill, Gao, Jianfeng

论文摘要

我们介绍了Godel(接地开放对话语言模型),这是对话框的大型预训练的语言模型。与诸如Dialogpt之类的早期模型相反,Godel利用了一个新的扎根预训练阶段,旨在更好地支持将Godel调整为广泛的下游对话框任务,这些任务需要当前对话外部的信息(例如,数据库或文档)来产生良好的响应。针对一系列基准测试的实验,这些基准包括以任务为导向的对话框,对话质量质量质量图和接地的开放域对话框,表明,在人类和自动评估方面,Godel在几次射击的微调设置中都超过了最先进的预训练的对话模型。我们评估方法的一个新颖特征是引入了效用概念,该概念除了其交流特征(内在评估)外,还评估了响应的有用性(外部评估)。我们表明,外部评估提供了改进的通道间一致性和与自动指标的相关性。代码和数据处理脚本公开可用。

We introduce GODEL (Grounded Open Dialogue Language Model), a large pre-trained language model for dialog. In contrast with earlier models such as DialoGPT, GODEL leverages a new phase of grounded pre-training designed to better support adapting GODEL to a wide range of downstream dialog tasks that require information external to the current conversation (e.g., a database or document) to produce good responses. Experiments against an array of benchmarks that encompass task-oriented dialog, conversational QA, and grounded open-domain dialog show that GODEL outperforms state-of-the-art pre-trained dialog models in few-shot fine-tuning setups, in terms of both human and automatic evaluation. A novel feature of our evaluation methodology is the introduction of a notion of utility that assesses the usefulness of responses (extrinsic evaluation) in addition to their communicative features (intrinsic evaluation). We show that extrinsic evaluation offers improved inter-annotator agreement and correlation with automated metrics. Code and data processing scripts are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源