论文标题

通勤环光谱的拓扑循环同源性的动机过滤

A motivic filtration on the topological cyclic homology of commutative ring spectra

论文作者

Hahn, Jeremy, Raksit, Arpon, Wilson, Dylan

论文摘要

对于Prime数字$ P $和A $ p $ - QuasisyNtomic的通勤环$ r $,bhatt-morrow- scholze-scholze定义的动机过滤,$ \ mathrm {thh}(thh}(thh}(r)的$ p $ -completions, $ \ mathrm {tc}(r)$,与$ \ mathrm {tp}(r)$和$ \ mathrm {tc}(r)$分别恢复了$ r $的棱镜和构想同胞的相关对象。我们提供了这些过滤的替代结构,当$ r $是行为良好的通勤环频谱时,我们也适用。例如,我们可以将$ r $带到$ \ mathbb {s} $,$ \ mathrm {mu} $,$ \ mathrm {ku} $,$ \ mathrm {ko} $,或$ \ mathrm {tmrm {tmf} $。我们计算Adams Summand $ \ ell $的Mod $(P,V_1)$ syntomic共同体,并观察到,当$ v(1)_*\ Mathrm {tc}(\ ell)$ collapses $ v(1)_**\ Mathrm {tc} $ v(1)_*\ mathrm {tc} $ collapses的动机频谱序列时

For a prime number $p$ and a $p$-quasisyntomic commutative ring $R$, Bhatt--Morrow--Scholze defined motivic filtrations on the $p$-completions of $\mathrm{THH}(R), \mathrm{TC}^{-}(R), \mathrm{TP}(R),$ and $\mathrm{TC}(R)$, with the associated graded objects for $\mathrm{TP}(R)$ and $\mathrm{TC}(R)$ recovering the prismatic and syntomic cohomology of $R$, respectively. We give an alternate construction of these filtrations that applies also when $R$ is a well-behaved commutative ring spectrum; for example, we can take $R$ to be $\mathbb{S}$, $\mathrm{MU}$, $\mathrm{ku}$, $\mathrm{ko}$, or $\mathrm{tmf}$. We compute the mod $(p,v_1)$ syntomic cohomology of the Adams summand $\ell$ and observe that, when $p \ge 3$, the motivic spectral sequence for $V(1)_*\mathrm{TC}(\ell)$ collapses at the $\mathrm{E}_2$-page.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源