论文标题

多用户线性分布式计算

Multi-User Linearly-Separable Distributed Computing

论文作者

Khalesi, Ali, Elia, Petros

论文摘要

在这项工作中,我们探讨了多用户线性可分离的分布式计算的问题,其中$ n $服务器有助于计算$ k $用户的所需功能(作业),并且每个所需功能都可以写成最多$ l $(通常非线性)子任务的线性组合(或子功能)。每个服务器都计算一些子任务,将其计算出输出的函数传达给某些用户,然后每个用户收集其接收到的数据以恢复其所需的功能。我们探讨了多少服务器之间的计算和通信关系计算每个子任务与每个用户收到多少数据。 对于代表一组请求函数的线性可分离形式的矩阵$ \ mathbf {f} $,我们的问题变得等同于稀疏矩阵分解的开放问题$ \ mathbf {f} = \ mathbf {f}编码矩阵$ \ mathbf {e} $分别表示通信和计算成本。本文在我们的分布式计算问题,基质分解,综合征解码和覆盖代码之间建立了一种新的关系。为了降低计算成本,上述$ \ mathbf {d} $是从覆盖代码或此处引入的类似类似的“部分覆盖”代码的类别中得出的,其研究在这里产生了我们所介绍的计算成本。

In this work, we explore the problem of multi-user linearly-separable distributed computation, where $N$ servers help compute the desired functions (jobs) of $K$ users, and where each desired function can be written as a linear combination of up to $L$ (generally non-linear) subtasks (or sub-functions). Each server computes some of the subtasks, communicates a function of its computed outputs to some of the users, and then each user collects its received data to recover its desired function. We explore the computation and communication relationship between how many servers compute each subtask vs. how much data each user receives. For a matrix $\mathbf{F}$ representing the linearly-separable form of the set of requested functions, our problem becomes equivalent to the open problem of sparse matrix factorization $\mathbf{F} = \mathbf{D}\mathbf{E}$ over finite fields, where a sparse decoding matrix $\mathbf{D}$ and encoding matrix $\mathbf{E}$ imply reduced communication and computation costs respectively. This paper establishes a novel relationship between our distributed computing problem, matrix factorization, syndrome decoding and covering codes. To reduce the computation cost, the above $\mathbf{D}$ is drawn from covering codes or from a here-introduced class of so-called `partial covering' codes, whose study here yields computation cost results that we present.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源