论文标题
超越RMSE:机器学习的道路用户交互模型是否会产生类似人类的行为?
Beyond RMSE: Do machine-learned models of road user interaction produce human-like behavior?
论文作者
论文摘要
自动驾驶汽车使用各种传感器和机器学习型号来预测周围道路使用者的行为。文献中的大多数机器学习模型都集中在定量误差指标上,例如均方根误差(RMSE),以学习和报告其模型的功能。对定量误差指标的关注倾向于忽略模型的更重要的行为方面,从而提出了这些模型是否真正预测类似人类行为的问题。因此,我们建议分析机器学习模型的输出,就像我们将在常规行为研究中分析人类数据一样。我们介绍了定量指标,以证明在自然主义的高速公路驾驶数据集中存在三种不同的行为现象:1)动力学依赖性谁通过合并点首次通过合并点2)通道上的车道更改,可容纳船上车辆的车辆3)车辆在高速公路上的车辆换车以避免驾驶汽车冲突。然后,我们使用相同的指标分析了三个机器学习模型的行为。尽管模型的RMSE值有所不同,但所有模型都捕获了运动学依赖性的合并行为,但在不同程度上挣扎以捕获更细微的小事变化和高速公路车道变化行为。此外,车道变化期间的碰撞厌恶分析表明,这些模型努力捕获人类驾驶的物理方面:在车辆之间留下足够的差距。因此,我们的分析强调了简单定量指标不足,并且在分析机器学习的人类驾驶预测模型时需要更广泛的行为观点。
Autonomous vehicles use a variety of sensors and machine-learned models to predict the behavior of surrounding road users. Most of the machine-learned models in the literature focus on quantitative error metrics like the root mean square error (RMSE) to learn and report their models' capabilities. This focus on quantitative error metrics tends to ignore the more important behavioral aspect of the models, raising the question of whether these models really predict human-like behavior. Thus, we propose to analyze the output of machine-learned models much like we would analyze human data in conventional behavioral research. We introduce quantitative metrics to demonstrate presence of three different behavioral phenomena in a naturalistic highway driving dataset: 1) The kinematics-dependence of who passes a merging point first 2) Lane change by an on-highway vehicle to accommodate an on-ramp vehicle 3) Lane changes by vehicles on the highway to avoid lead vehicle conflicts. Then, we analyze the behavior of three machine-learned models using the same metrics. Even though the models' RMSE value differed, all the models captured the kinematic-dependent merging behavior but struggled at varying degrees to capture the more nuanced courtesy lane change and highway lane change behavior. Additionally, the collision aversion analysis during lane changes showed that the models struggled to capture the physical aspect of human driving: leaving adequate gap between the vehicles. Thus, our analysis highlighted the inadequacy of simple quantitative metrics and the need to take a broader behavioral perspective when analyzing machine-learned models of human driving predictions.