论文标题

二维玻色气的基态能

The Ground State Energy of a Two-Dimensional Bose Gas

论文作者

Fournais, S., Girardot, T., Junge, L., Morin, L., Olivieri, M.

论文摘要

我们证明了以下公式,用于稀有bose气体的基态能量密度,密度$ρ$ $ 2 $ 2 $尺寸在热力学极限\ begin \ begin {align*} e^{\ rm {2d}}}}}}(ρ)=4πρ^2 y \ left(1 - y \ vert y \ y y \ y \ y \ y \ welet + wewt(2 2 y) \ frac {1} {2} + \ log(π)\ right)y \ right) + o(ρ^2 y^{2})。 \ end {align*}这里$ y = | \ log(ρa^2)|^{ - 1} $和$ a $是两体电位的散射长度。 $ 2 $尺寸的结果与$ 3 $尺寸相对应。该证明对于具有有限散射长度的所有正面潜力是有效的,特别是它涵盖了硬核能的关键情况。

We prove the following formula for the ground state energy density of a dilute Bose gas with density $ρ$ in $2$ dimensions in the thermodynamic limit \begin{align*} e^{\rm{2D}}(ρ) = 4πρ^2 Y\left(1 - Y \vert \log Y \vert + \left( 2Γ+ \frac{1}{2} + \log(π) \right) Y \right) + o(ρ^2 Y^{2}). \end{align*} Here $Y= |\log(ρa^2)|^{-1}$ and $a$ is the scattering length of the two-body potential. This result in $2$ dimensions corresponds to the famous Lee-Huang-Yang formula in $3$ dimensions. The proof is valid for essentially all positive potentials with finite scattering length, in particular it covers the crucial case of the hard core potential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源