论文标题
线性纽曼 - 芬罗(Newman-Penrose
Linear Newman-Penrose charges as subleading BMS and dual BMS charges
论文作者
论文摘要
在本文中,我们进一步开发了先前关于渐近平面空间的工作,并以$ r $ $ $扩展为$ r^{ - 1} $中的所有订单中扩展了Sblead BMS和双BMS费用。这构成了与先前发现的纽曼 - 芬罗收费有关的该处方的完整说明。我们提供了有关无限纽曼 - 奔驰塔的起源的解释,该指控涉及渐近对称性,并证明为什么这些费用在非线性级别无法保存,并且即使在线性级别也无法表现出完全超级转换的不变性。
In this paper, we further develop previous work on asymptotically flat spacetimes and extend subleading BMS and dual BMS charges in a large $r$ expansion to all orders in $r^{-1}$. This forms a complete account of this prescription in relation to the previously discovered Newman-Penrose charges. We provide an explanation for the origin of the infinite tower of linear Newman-Penrose charges with regards to asymptotic symmetries and justify why these charges fail to be conserved at the non-linear level as well as failing to exhibit full supertranslation invariance even at the linear level.