论文标题

部分可观测时空混沌系统的无模型预测

Variational determination of arbitrarily many eigenpairs in one quantum circuit

论文作者

Xu, Guanglei, Guo, Yi-Bin, Li, Xuan, Zhou, Zong-Sheng, Liao, Hai-Jun, Xiang, T.

论文摘要

最先进的量子计算硬件已进入嘈杂的中间量子量子(NISQ)时代。 NISQ设备受到数量有限的量子位和浅回路深度的限制,但仍证明了对各种受试者的应用的潜力。一个示例是最初引入用于计算接地状态的变异量子本素果(VQE)。尽管VQE现已扩展到对激发态的研究,但先前提出的算法涉及递归优化方案,该方案需要许多额外的操作,并具有更深层次的量子电路,以确保不同试验状态的正交性。在这里,我们提出了一种新算法,以同时确定许多低能量特征状态。通过引入辅助Qubits以净化试验状态,以使它们在整个优化过程中保持正交相互保持,我们的算法允许在一个量子电路中有效计算这些状态。我们的算法大大降低了电路和读数误差的复杂性,并可以在本征空间上进行灵活的后加工,从而可以准确地确定特征底面的特征。我们通过将其应用于横向ISIN模型来证明该算法。通过比较使用该变异算法获得的结果与确切的结果,我们发现汉密尔顿的特征值随着电路深度的增加而迅速收敛。融合特征值的精度具有相同的顺序,这意味着与特征值本身相比,任何两个特征值之间的差异都可以更准确地确定。

The state-of-the-art quantum computing hardware has entered the noisy intermediate-scale quantum (NISQ) era. Having been constrained by the limited number of qubits and shallow circuit depth, NISQ devices have nevertheless demonstrated the potential of applications on various subjects. One example is the variational quantum eigensolver (VQE) that was first introduced for computing ground states. Although VQE has now been extended to the study of excited states, the algorithms previously proposed involve a recursive optimization scheme which requires many extra operations with significantly deeper quantum circuits to ensure the orthogonality of different trial states. Here we propose a new algorithm to determine many low energy eigenstates simultaneously. By introducing ancillary qubits to purify the trial states so that they keep orthogonal to each other throughout the whole optimization process, our algorithm allows these states to be efficiently computed in one quantum circuit. Our algorithm reduces significantly the complexity of circuits and the readout errors, and enables flexible post-processing on the eigen-subspace from which the eigenpairs can be accurately determined. We demonstrate this algorithm by applying it to the transverse Ising model. By comparing the results obtained using this variational algorithm with the exact ones, we find that the eigenvalues of the Hamiltonian converge quickly with the increase of the circuit depth. The accuracies of the converged eigenvalues are of the same order, which implies that the difference between any two eigenvalues can be more accurately determined than the eigenvalues themselves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源