论文标题

神经网络,可快速访问数字双扫描物理特性测量

Neural networks for a quick access to a digital twin of scanning physical properties measurements

论文作者

Terashima, Kensei, de Castro, Pedro Baptista, Echevarria, Miren Garbiñe Esparza, Matsumoto, Ryo, Yamamoto, Takafumi D, Saito, Akiko T, Takeya, Hiroyuki, Takano, Yoshihiko

论文摘要

对于在有限的实验时间内进行成功测量,对初步数据的有效使用起着至关重要的作用。这项工作表明,一种简单的馈电类型神经网络方法,用于学习初步实验数据可以快速访问来模拟学习范围内的实验。该方法对在多个轴上进行扫描的物理性质测量特别有益,在该轴上进行扫描,在该轴上需要数据或集成数据才能获得客观数量。由于其简单性,学习过程足够快,可以通过使用开源优化技术和深度学习库来实现学习和模拟。在这里,提出了这样一种用于增强实验数据的工具,旨在帮助研究人员在实际进行昂贵的实验之前决定最合适的实验条件。此外,该工具也可以从利用先前发布的数据重新利用和重新利用的角度来使用,从而加速了功能材料的数据驱动探索。

For performing successful measurements within limited experimental time, efficient use of preliminary data plays a crucial role. This work shows that a simple feedforward type neural networks approach for learning preliminary experimental data can provide quick access to simulate the experiment within the learned range. The approach is especially beneficial for physical properties measurements with scanning on multiple axes, where derivative or integration of data are required to obtain the objective quantity. Due to its simplicity, the learning process is fast enough for the users to perform learning and simulation on-the-fly by using a combination of open-source optimization techniques and deep-learning libraries. Here such a tool for augmenting the experimental data is proposed, aiming to help researchers to decide the most suitable experimental conditions before performing costly experiments in real. Furthermore, this tool can also be used from the perspective of taking advantage of reutilizing and repurposing previously published data, accelerating data-driven exploration of functional materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源