论文标题

有效的相互依存的系统恢复模型

Efficient Interdependent Systems Recovery Modeling with DeepONets

论文作者

Dhulipala, Somayajulu L. N., Hruska, Ryan C.

论文摘要

建模相互依存的关键基础设施的恢复是量化和优化社会弹性对破坏性事件的关键组成部分。但是,在随机破坏事件下模拟大规模相互依赖系统的恢复在计算上是昂贵的。因此,我们建议在本文中应用深度运算符网络(DeepOnets),以加速相互依赖系统的恢复模型。 DeepOnets是ML架构,可以从数据中识别数学运算符。管理方程式的形式deponets标识和相互依存的系统恢复模型的管理方程相似。因此,我们假设deponets可以通过很少的培训数据有效地对相互依存的系统恢复进行建模。我们将deponets应用于具有16个状态的四个相互依存系统的简单情况。与参考结果相比,总体而言,DeepOnets在预测这些相互依存的系统中为未训练样本数据的恢复而进行了令人满意的表现。

Modeling the recovery of interdependent critical infrastructure is a key component of quantifying and optimizing societal resilience to disruptive events. However, simulating the recovery of large-scale interdependent systems under random disruptive events is computationally expensive. Therefore, we propose the application of Deep Operator Networks (DeepONets) in this paper to accelerate the recovery modeling of interdependent systems. DeepONets are ML architectures which identify mathematical operators from data. The form of governing equations DeepONets identify and the governing equation of interdependent systems recovery model are similar. Therefore, we hypothesize that DeepONets can efficiently model the interdependent systems recovery with little training data. We applied DeepONets to a simple case of four interdependent systems with sixteen states. DeepONets, overall, performed satisfactorily in predicting the recovery of these interdependent systems for out of training sample data when compared to reference results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源