论文标题

一个简单的视频恢复基线,并进行分组的时空移位

A Simple Baseline for Video Restoration with Grouped Spatial-temporal Shift

论文作者

Li, Dasong, Shi, Xiaoyu, Zhang, Yi, Cheung, Ka Chun, See, Simon, Wang, Xiaogang, Qin, Hongwei, Li, Hongsheng

论文摘要

视频修复旨在恢复降级视频的清晰框架,具有许多重要的应用程序。视频修复的关键取决于利用框架间信息。但是,现有的深度学习方法通​​常依赖于复杂的网络体系结构,例如光流估计,可变形卷积和跨框架自我发项层,从而导致高计算成本。在这项研究中,我们提出了一个简单而有效的视频修复框架。我们的方法基于分组的时空移位,这是一种轻巧且直接的技术,可以隐式捕获多框架聚合的框架间对应关系。通过引入分组的空间转移,我们获得了膨胀的有效接收场。结合基本的2D卷积,这个简单的框架可以有效地汇总框架间信息。广泛的实验表明,我们的框架优于先前的最新方法,而在视频脱张和视频降解任务上都使用了少于四分之一的计算成本。这些结果表明我们的方法有可能在维持高质量的结果的同时显着减少计算开销。代码可在https://github.com/dasongli1/shift-net上提供可用。

Video restoration, which aims to restore clear frames from degraded videos, has numerous important applications. The key to video restoration depends on utilizing inter-frame information. However, existing deep learning methods often rely on complicated network architectures, such as optical flow estimation, deformable convolution, and cross-frame self-attention layers, resulting in high computational costs. In this study, we propose a simple yet effective framework for video restoration. Our approach is based on grouped spatial-temporal shift, which is a lightweight and straightforward technique that can implicitly capture inter-frame correspondences for multi-frame aggregation. By introducing grouped spatial shift, we attain expansive effective receptive fields. Combined with basic 2D convolution, this simple framework can effectively aggregate inter-frame information. Extensive experiments demonstrate that our framework outperforms the previous state-of-the-art method, while using less than a quarter of its computational cost, on both video deblurring and video denoising tasks. These results indicate the potential for our approach to significantly reduce computational overhead while maintaining high-quality results. Code is avaliable at https://github.com/dasongli1/Shift-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源