论文标题
使用因果关系的帕金森氏症结果的纵向预后
Longitudinal Prognosis of Parkinsons Outcomes using Causal Connectivity
论文作者
论文摘要
帕金森氏病(PD)是一种运动障碍,是第二个最常见的神经占用性疾病,尽管它相对丰度,但尚无临床上接受的神经影像学生物标志物来做出预后预测或区分相似的非典型神经退行性疾病多重系统萎缩和渐进式上核超核痛苦。先前已显示为神经退行性的早期标记,包括运动回路和基底神经节在内的电路中的异常连通性。因此,我们假设整个大脑区域间连接性的组合模式可用于形成患者特异性的疾病状态和PD进展的预测模型。这些模型采用了通过非侵入性测量功能性MRI计算出来的连通性,在PD和非典型的外观之间进行了差异预测,预测疾病特异性量表的进展,并预测认知能力下降。此外,我们确定了进展和诊断最有用的联系。当预测统一帕金森氏病评级量表(MDS-UPDRS)和蒙特利尔认知评估(MOCA)(MOCA)的运动障碍社会赞助的一年进展时,预测中的平均绝对错误为1.8和0.6个基点。在区分特发性PD与外观和健康对照方面,达到平衡精度为0.68。我们还发现网络组件与预后和诊断任务密切相关,尤其是在深核,运动区域和丘脑内的连接。这些预测使用在大多数临床环境中易于获得的MRI模式,证明了fMRI连通性作为帕金森氏病预后生物标志物的强大潜力。
Parkinsons disease (PD) is a movement disorder and the second most common neurodengerative disease but despite its relative abundance, there are no clinically accepted neuroimaging biomarkers to make prognostic predictions or differentiate between the similar atypical neurodegenerative diseases Multiple System Atrophy and Progressive Supranuclear Palsy. Abnormal connectivity in circuits including the motor circuit and basal ganglia have been previously shown as early markers of neurodegeneration. Therefore, we postulate the combination patterns of interregional dysconnectivity across the brain can be used to form a patient-specific predictive model of disease state and progression in PD. These models, which employ connectivity calculated from noninvasively measured functional MRI, differentially predict between PD and the atypical lookalikes, predict progression on a disease-specific scale, and predict cognitive decline. Further, we identify the connections most informative for progression and diagnosis. When predicting the one-year progression in the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and Montreal Cognitive assessment (MoCA), mean absolute errors of 1.8 and 0.6 basis points in the prediction are achieved respectively. A balanced accuracy of 0.68 is attained when distinguishing idiopathic PD versus the lookalikes and healthy controls. We additionally find network components strongly associated with the prognostic and diagnostic tasks, particularly incorporating connections within deep nuclei, motor regions, and the Thalamus. These predictions, using an MRI modality readily available in most clinical settings, demonstrate the strong potential of fMRI connectivity as a prognostic biomarker in Parkinsons disease.