论文标题
产生多样化的室内家具安排
Generating Diverse Indoor Furniture Arrangements
论文作者
论文摘要
我们提出了一种从人体设计的家具布局数据中生成室内家具的布置的方法。我们的方法创建了针对指定多样性的安排,例如房间中所有家具的总价格以及放置的碎片数量。为了产生逼真的家具布置,我们在人类设计的布局上训练生成的对抗网络(GAN)。为了针对安排中的特定多样性,我们通过质量多样性算法优化了GAN的潜在空间,以产生多样化的安排集合。实验表明,我们的方法发现了一组与人类设计的布局相似的布置,但价格和家具的数量也有所不同。
We present a method for generating arrangements of indoor furniture from human-designed furniture layout data. Our method creates arrangements that target specified diversity, such as the total price of all furniture in the room and the number of pieces placed. To generate realistic furniture arrangement, we train a generative adversarial network (GAN) on human-designed layouts. To target specific diversity in the arrangements, we optimize the latent space of the GAN via a quality diversity algorithm to generate a diverse arrangement collection. Experiments show our approach discovers a set of arrangements that are similar to human-designed layouts but varies in price and number of furniture pieces.