论文标题
连贯的噪声使概率序列在尖峰神经元网络中重播
Coherent noise enables probabilistic sequence replay in spiking neuronal networks
论文作者
论文摘要
当面对模棱两可或不确定的提示时,动物依靠不同的决策策略。根据上下文的不同,决策可能会偏向于过去最常经历的事件,或者更具探索性。对认知的核心做出的一种特定类型的决策是对模棱两可的提示的顺序记忆回忆。先前开发的序列预测的尖峰神经元网络实施,并通过本地,生物学启发的可塑性规则以无监督的方式学习复杂的高阶序列。为了响应模棱两可的提示,该模型确定性地回忆了训练期间最常显示的序列。在这里,我们提供了模型的扩展,从而实现了一系列不同的决策策略。在此模型中,通过向神经元提供噪声来产生探索行为。由于该模型依赖于人口编码,因此无关的噪声平均值,并且召回动力学仍然有效地确定性。在存在局部相关的噪声的情况下,可以避免平均效应而不会损害模型性能,也不需要大噪声幅度。我们研究了自然界中发生的两种形式的相关噪声:共享的突触背景输入,以及将刺激的随机锁定到网络活动中的时空振荡。根据噪声特征,网络采用各种重播策略。因此,这项研究提供了潜在的机制,解释了学习序列的统计数据如何影响决策制定以及如何在学习后调整决策策略。
Animals rely on different decision strategies when faced with ambiguous or uncertain cues. Depending on the context, decisions may be biased towards events that were most frequently experienced in the past, or be more explorative. A particular type of decision making central to cognition is sequential memory recall in response to ambiguous cues. A previously developed spiking neuronal network implementation of sequence prediction and recall learns complex, high-order sequences in an unsupervised manner by local, biologically inspired plasticity rules. In response to an ambiguous cue, the model deterministically recalls the sequence shown most frequently during training. Here, we present an extension of the model enabling a range of different decision strategies. In this model, explorative behavior is generated by supplying neurons with noise. As the model relies on population encoding, uncorrelated noise averages out, and the recall dynamics remain effectively deterministic. In the presence of locally correlated noise, the averaging effect is avoided without impairing the model performance, and without the need for large noise amplitudes. We investigate two forms of correlated noise occurring in nature: shared synaptic background inputs, and random locking of the stimulus to spatiotemporal oscillations in the network activity. Depending on the noise characteristics, the network adopts various replay strategies. This study thereby provides potential mechanisms explaining how the statistics of learned sequences affect decision making, and how decision strategies can be adjusted after learning.